

--- RENEWABLE ENERGY ----

THERMODYNAMIC SOLAR ENERGY | HEAT PUMPS

Address Zona Industrial de Laúndos, Lote 48 **GPS Coordinates** N 41 27.215', W 8 43.669' **Telephone** + 351 252 600 230 **E-mail** energie@energie.pt **Website** www.energie.pt

GENERALCATALOGUE

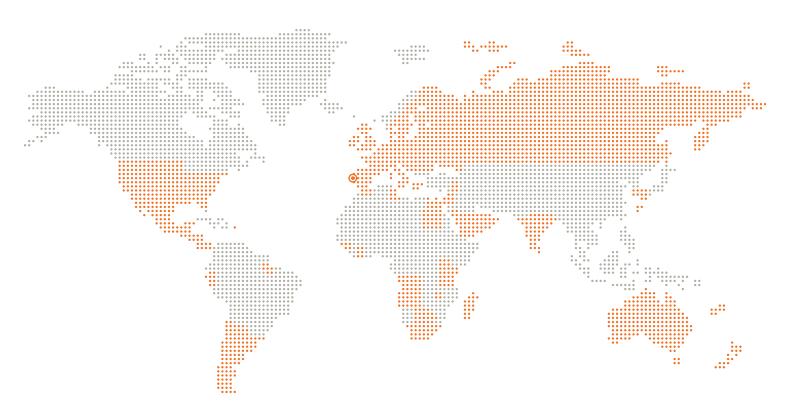
RENEWABLE ENERGY | ECONOMY | INDEPENDENCE | ECOLOGY

Address Zona Industrial de Laúndos, Lote 48 4570–311 Laúndos – Póvoa de Varzim PORTUGAL **GPS Coordinates** N 41 27.215', W 8 43.669' **Telephone** + 351 252 600 230 E-mail energie@energie.pt Web www.energie.pt

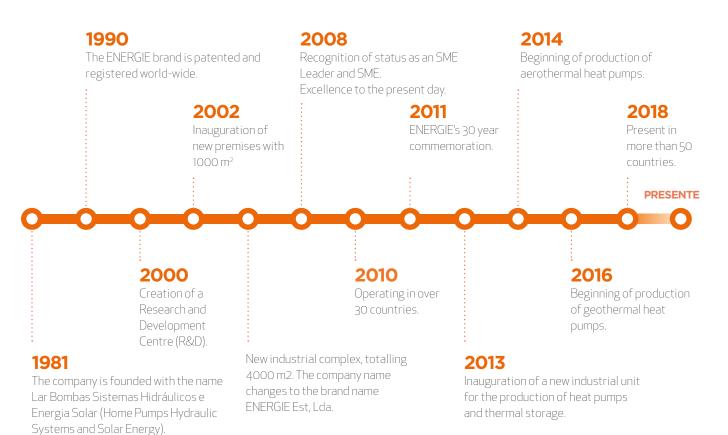
ENERGIE

THE ENERGIE BRAND

Based on a customer satisfaction policy, the brand is $synonymous\ with\ reliability,\ quality,\ innovation\ and\ efficiency.$ It is governed by strict standards that aim at economy, comfort and well-being of the consumers.


To find out more about us go to:

www.energie.pt



ENERGIE AROUND THE WORLD 50 COUNTRIES 5 CONTINENTS

COMPANY CHRONOLOGY

PICTOGRAMS OF THE PRODUCT

Pictograms are icons developed to make the interpretation of key characteristics of each one of our products easier. Check our list of pictograms below and discover the meaning behind each one. When you find one in a product technical sheet you can return to this page to check the meaning if you have doubts.

SOLAR PERFORMANCE

The performance of the equipment is far higher than the COP of any aerothermal heat pump when exposed to Solar Radiation.

ANTI-LEGIONELLA

Function that allows the user to disinfect/sanitise the quipment cylinder.

EXTRA COIL

Equipment with a supplementary/extra coil that allows the other auxiliary systems to be connected.

AUTOMATIC DEFROST

Defrost function with automatic management. The equipment does defrosting to guarantee that it will function even when the temperature is below zero.

R134A

Cooling liquid that is environmentally friendly, nonflammable and non-toxic.

R407C / R410A

Cooling liquid that is environmentally friendly, nonflammable and non-toxic.

ENERGY EFFICIENCY

Efficient equipment with low energy consumption.

ENERGY EFFICIENCY +

Super Efficient Equipment with low energy consumption.

EASY TO INSTALL

The system has a small amount of installation items.

GREAT DURABILITY

The system is designed to have longevity.

ANTICORROSION

The system has magnesium anode, which carries out the cathodic protection (anticorrosion) of the cylinder.

RESPECT FOR THE **ENVIRONMENT**

The polyurethane used inside the cylinder is free of hydrofluorocarbons.

AMBIENT TEMPERATURE **DISPLAY**

The command panel display shows the temperature of the cylinder.

MADE IN EUROPE

European production.

SILENT

The equipment does not make any sound in your home.

FAST HEATING TIME

Equipment with fast heating time.

ENERGY LABELING AND DIRECTION ErP, WHY?

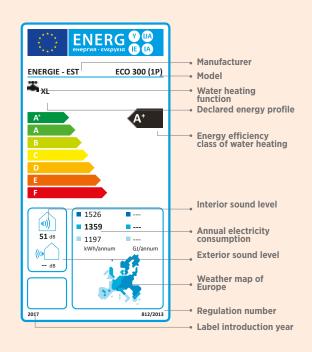
Halting climate change, securing supplies and increasing energy industrial competitiveness are some of the most important challenges facing the European Union. Energy saving is the best way to address them. With Directive 2009/125/EC on the ecological design of energy-related products (ErP Directive, Energy related Products) and Directive 2010/30/ EC on energy labeling, the general requirements (valid for all household

products) have been set for energy savings in one of the most energyconsuming and polluting sectors in the European Union. From the provisions of the previous directives, specific legislative tools have been created for each family of products: the European regulations. The regulations indicate how to use the energy label and define the minimum energy efficiency that new products should bring to market. Once published, the

regulations are immediately applicable in all EU countries and do not require transposition into national regulations. The products for heating and hot water production also have their regulations on ErP and labeling. The energy label simplifies the process of choosing the most efficient product.

Basic Principles

Defines the shape and content of the energy labels of products and systems for heating and storing hot water; Establishes standards to inform consumers about the energy performance of products; Defines the responsibilities of suppliers and sellers.


WHY WERE THE **HEATING AND HOT WATER PRODUCTS CHOSEN?**

The preparatory study carried out by the European Commission has confirmed that domestic heating and hot water production systems account for approximately 30% of Europe's energy consumption. It was also estimated that, by designing green products (minimum requirements) and encouraging end-users to acquire the most efficient technologies (energy label), the following could be achieved in 2020:

Total annual energy savings equivalent to 56 million tons of oil. The equivalent of erasing all heating and hot water equipment throughout the Iberian Peninsula. This would mean a reduction in Co₂ emissions by 136 Million tons, approximately what would absorb a forest the size of Portugal.

From these premises were created the regulations on ecological design and energy labeling of boilers, heat pumps, micro-cogeneration units, water heaters and hot water tanks. Since September 26, 2015, the regulations have mandated these products to meet minimum efficiency and labeling requirements.

ECOLABEL EXEMPLIFICATIVE LABEL

ECODESIGN DIRECTIVE

The Ecodesign directive for heating and hot water production products establishes minimum performance requirements that all appliances must comply with. The new requirements will eliminate less efficient technologies from the market and thus raise the level of energy efficiency of the basic supply. In addition, it will be necessary to comply with those requirements in order to be able to include in the products the CE marking, which is indispensable for their commercialization in the European market. The ErP directive is only applicable to products placed on the market since 9/26/2015. Products previously purchased or already at the dealers' points of sale or warehouses may continue to be sold and installed even if they do not meet the new requirements.

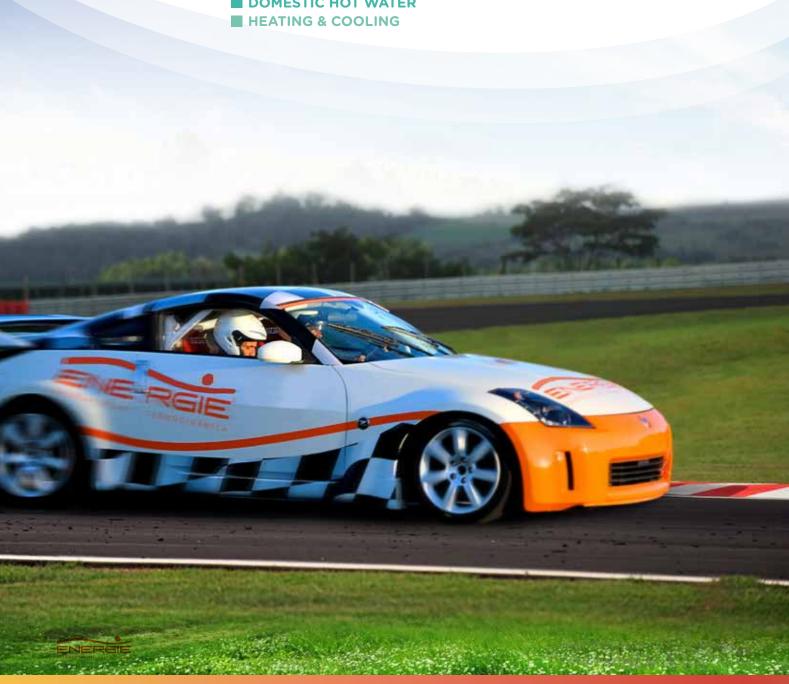
HEATING / REG. 813/2013

- **BOILERS** (GAS, ELECTRIC, DIESEL)
- **HEAT PUMPS** (GAS, ELECTRIC)
- MICROCOGERATION UNITS (WITH MAXIMUM ELECTRICAL POWER <50 KW)

HOT WATER / REG. 814/2013

- CONVENTIONAL GAS / DIESEL / ELECTRIC **HEATERS**
- HOT HEAT WATER PUMPS
- THERMAL SOLAR INSTALLATIONS
- HOT WATER TANKS (WITH A CAPACITY ≤ 2000 LITERS)

PERFORMANCE **EFFICIENCY** QUALITY


WE WORK EVERYDAY ON DELIVERING SOLUTIONS FOR YOUR COMFORT AND WELL-BEING!

THERMODYNAMIC SOLAR ENERGY

- **DOMESTIC HOT WATER**
- **■** CENTRAL HEATING
- SWIMMING-POOL HEATING

AIR TO WATER HEAT PUMPS

■ DOMESTIC HOT WATER

ÍNDICE

THERMODYNAMIC SOLAR ENERGY

DOMESTIC HOT WATER - DOMESTIC USE

ECO | ECOTOP

100 to 500 litres solutions

SOLAR BOX

Adapts to all kinds of cylinders

DOMESTIC HOT WATER - INDUSTRIAL USE

ECO XL

1000 to 6000 litres solutions

CENTRAL HEATING

SOLAR BLOCK

6 to 40 panels solutions

SOLAR BLOCK ULTRA | ULTRA PLUS

12 and 16 panels solutions

SWIMMING-POOL HEATING SOLAR BLOCK

6 to 40 panels solutions

DOMESTIC HOT WATER - DOMESTIC USE

AQUAPURA SPLIT

160 to 500 litres solutions

AQUAPURA MONOBLOC

100 to 300 litres solutions

HEATING & COOLING

INVERTER

12 and 16 kW monobloc heat pump

EVOTERM COMBI

13 kW split heat pump

X30

Monobloc heat pump from 30 to 120 kW

THERMODYNAMIC SOLAR SYSTEM

OPERATING PRINCIPLE

Solar Panel

- Captures heat regardless of climate.
- Primary circuit does not need to dissipate excess heat on hotter days.
- Easy integration with architecture, versatile, no visual impact.

Equipment

- Without ducts.
- Without ventilators.
- Without defrost cycles that use up energy.
- Super efficient compressor with low energy consumption.
- No need to install support equipment.
- Hot water guaranteed, available day and night, hail, rain, wind
- or shine up to 55°c.

HOT WATER UP TO

DOMESTIC HOT WATER CENTRAL HEATING SWIMMING-POOL HEATING

Compressor

Expansion Valve

The Thermodynamics Solar System joins two incomplete technologies, the heat pump and the solar thermal collector.

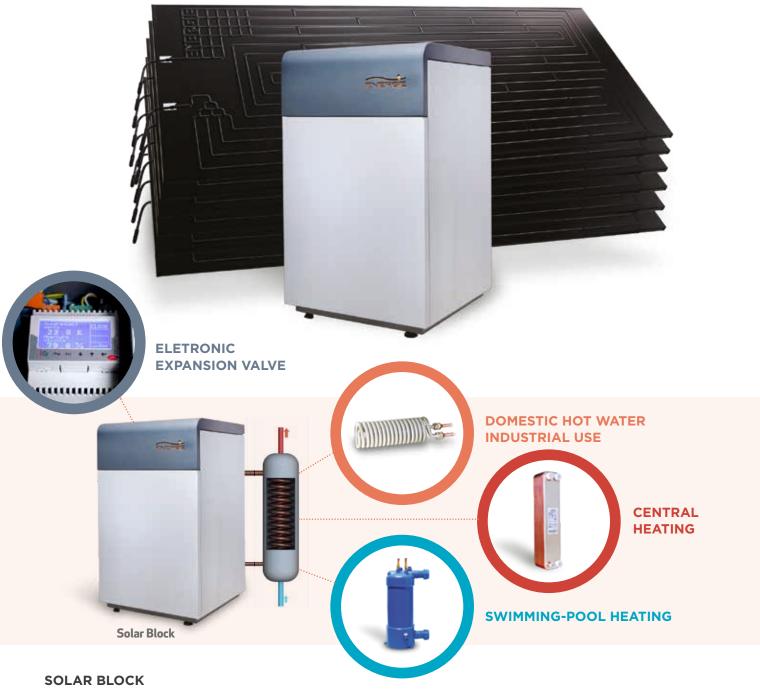
Heat pumps are quite efficient equipment but the heat they produce from their renewable component varies only according to changes in the temperature of the environment. Thermal solar collectors are the best source of heat on hot and sunny days but they are totally inefficient whenever there is no sun.

The Thermodynamic Solar Technology manages to surpass the limitations of both the heat pump and solar collector technologies.

Through the cooling liquid (R134a or R407c) which covers a closed circuit, the liquid goes into the solar panel and suffers the action of sun, rain, wind, environment temperature and other climate factors. During this process the liquid gains heat in a more favourable way than a heat pump. After this stage, the heat is transferred to an exchanger with the help of a small compressor, which heats the water. The liquid cools down and the circuit is repeated.

As the fluid has a boiling temperature of approximately -30°C, the system works even when there is no sun and it even works at night, providing hot water at 55°C, day and night, hail, rain, wind or shine, unlike the traditional solar thermal system.

The energy consumption of the system is basically the same as a fridge compressor that makes the liquid circulate. There are no ventilators that help the evaporation process, or defrost cycles, which imply unnecessary energy consumption, unlike what happens with heat pumps.


There are left and right thermodynamic solar panels. These can be distinguished by looking at the side that has the connections, as seen in the picture.

- ANODIZED ALUMINIUM, WITH FLEXIBLE COATING.
- LIGHT WEIGHT ONLY 8 KILOS, EASY TO TRANSPORT AND INSTALL.
- DIMENSIONS: 2m X 0,8m X 0,02m.
- NO GLASS, RUBBER OR FRAGILE MATERIALS.
- NO RISK OF OVER HEATING.
- NO RISK OF FREEZING.
- HIGH RESISTANCE IN SALINE ENVIRONMENT.

- HIGH RESISTANCE TO HUMIDITY.
- IT CAN BE INSTALLED FROM 10° TO 85° IN A HORIZONTAL POSITION
- IT CAN BE INSTALLED ON THE ROOF, WALL, IN THE GARDEN, ETC...
- THE PANEL DOES NOT LOSE ITS EFFICIENCY WITH TIME OR WITH DIRT.
- NO NEED TO CLEAN.
- ESTIMATED USEFUL LIFE OF 25 YEARS.
- APPROVED FOR CORROSION TEST SALINE FOG EQUIVALENT TO 20 YEARS.

THERMODYNAMIC SOLAR BLOCK

This unit of the Thermodynamic Solar System has the following main components: a low consumption compressor, which is responsible for the circulation of the liquid throughout the whole system, a heat exchanger that dissipates heat into the water for consumption (Domestic Hot Water) or the closed heating circuit (Central Heating and Swimming-pool Heating) and an expansion component that reduces the boiling temperature from approximately - 30°C so that it can go back to the thermodynamic solar panels and capture heat again.

- MOST ADVANCED SCROLL COMPRESSOR IN THE MARKET.
- OPTMIZED SOUNDPROOFING.
- ELECTRONIC EXPANSION VALVE.
- VERSATILE ELECTRONIC CONTROLLER WITH INTUITIVE HANDLING.
- EXCELLENT QUALITY HEAT EXCHANGERS.

ELECTRONIC CONTROLLER

Electronic controller Inside

Exit

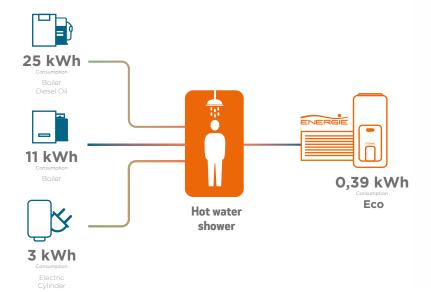
Unlock | ON/OFF

Menu | Modify | Set

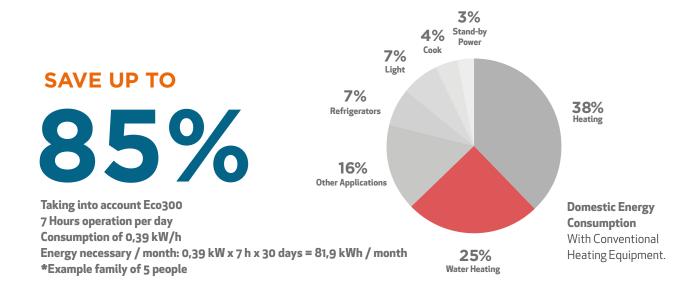
Change Values | Go through Menu | Sub-Menu | Display

ON/OFF Backup

- SYSTEM STATUS
- TEMPERATURE INFORMATION THROUGH RESPECTIVE SENSOR
- PROGRAMMING (DAILY/WEEKLY/ETC)
- DATE AND TIME INFORMATION
- EASY TO CONTROL THROUGH THE INSTALLATION
- SIMPLIFIED PARAMETRIZATION
- **OUTLETS TEST**
- 12 PREDEFINED CONFIGURATIONS
- INTEGRATION IN 3 CIRCUITS (CIRCULATOR PUMPS)
- 4 TEMPERATURE SENSORS
- CHRONO-THERMOMETRE
- 6 LANGUAGES
- OPTIONAL GTC MODULE



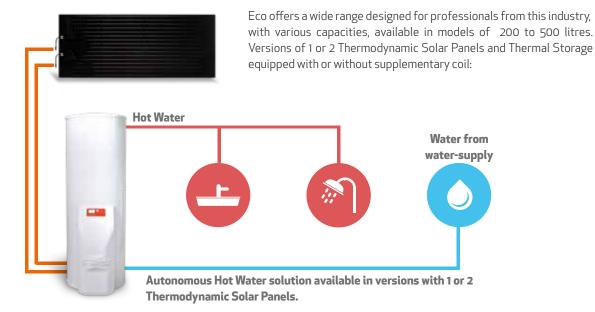
Distribution of consumption to different systems

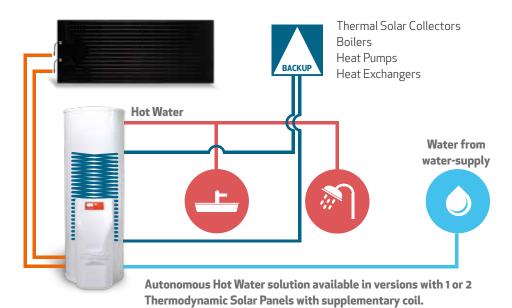


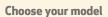
DID YOU KNOW?

That all thermodynamic solar systems only have one mechanical element that requires electricity? This element is a low energy consumption compressor and is extremely efficient. As the capacity to capture heat from the environment is primarily ensured through solar radiation, it is superior to other equipment with the same goal ensuring saving to the maximum.

The maintenance of the system is practically non-existent and it has high longevity.


Probably the most developed solar water heater in the world





- 1 Model
 - Eco
- 2 Capacity (litres) 200, 250, 300, 500 litres Cylinders
- **3** Cylinder Material esm (Enamelled)
 - i (Stainless)
- 4 2 Solar Panels
- 5 Supplementary Coil
- * Optional and when applicable **888** Represents the capacity of equipment

Examples

ECO 300esms Eco with 300 litres capacity with enamelled cylinder and 2 solar panels

ECO 200esm Eco with 200 litres capacity with enamelled cylinder and 1 solar panel

ECO 300ix Eco with 300 litres capacity with stainless steel cylinder, supplementary coil and 1 solar panel

ECO 300isx Eco with 300 litres capacity with stainless steel cylinder, supplementary coil and 2 solar panels

ELECTRONIC CONTROLLER

- 1 LCD colour screen
- 2 ON / OFF General
- 3 ON / OFF Compressor
- 4 ON / OFF Anti-legionella
- Menu
- **6 Electrical support** (malfunction)
- **Execute | Lock / Unlock**

ECO Operating Mode

In the ECO operating mode, the equipment only works as a Thermodynamic Solar System to heat water in the thermal storage. Thus we can have higher efficiency, guaranteeing maximum saving for the user.

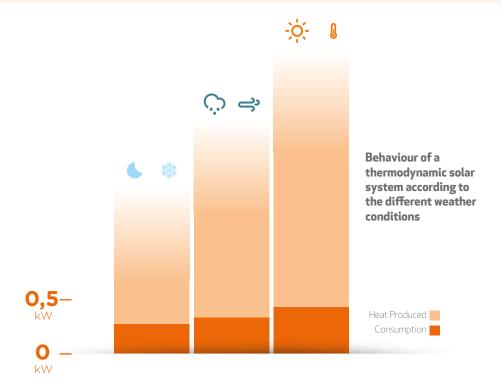
AUTO Operating Mode

In the AUTO operating mode, the equipment works as a Thermodynamic Solar System and/or electrical support, there being an automatic management between the operating of the solar system and electrical support, in order to maintain the efficiency of the equipment, thus providing a higher quantity of hot water available.

BOOST Operating mode

In the BOOST operating mode the equipment works with a Thermodynamic Solar System and electrical support simultaneously. This mode allows the user to get hot water in a shorter amount of time.

- HEAT IS CAPTURED UNDER THE FORM OF SOLAR RADITION, ENVIRONMENTAL TEMPERATURE, RAIN, WIND AND EVEN SNOW.
- THE HEAT PRODUCED ON COLDER DAYS, EVEN AT NIGHT IS SUFFICIENT TO ATTAIN THE WATER TEMPERATURE DESIRED.
- THE SOLAR PANEL IS LIGHT, DISCREET AND VERSATILE IN TERMS OF WHERE TO PUT IT.
- OUTSIDE CYLINDER CONDENSER (NO CONTACT WITH WATER).
- 3RD GENERATION THERMODYNAMIC SOLAR ENERGY.
- HOT WATER UP TO 55°C AVAILABLE 24h PER DAY.
- ALMOST NON-EXISTENT MAINTENANCE.
- THE ENERGY CONSUMPTION OF THE EQUIPMENT IS REDUCED DUE TO A SUPER EFFICIENT COMPRESSOR.
- NO DEFROST CYCLE.
- PV FUNCTION.


MAXIMUM EFFICIENCY

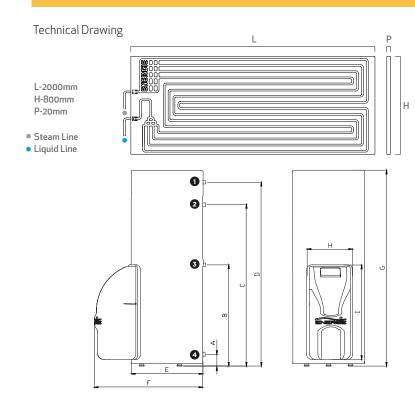
- 1 DHW Cylinder
- 2 Condenser
- 3 Optional Supplementary Coil
- 4 Ceramic Resistance + Thermostat + Temperature Sensor
- 5 High Density Insulation
- 6 Outside Coating
- **7** Thermodynamic Block
- 8 Cover
- 9 Electronic Controller

Versions with 1 or 2 Thermodynamic Solar Panels Enamelled or stainless steel cylinder With or without Supplementary Coil

Check warranty conditions

Specifications		Eco 200esm	Eco 250i Eco 250esm	Eco 300i Eco 300esm
Nominal Capacity	L	200	250	300
Thermal Power (Med/Max)	W	1690/2900	1690/2900	1690/2900
Power Consumption (Med/Max)	W	390/550	390/550	390/550
Temperature (Factory Setpoint)	°C	53	53	53
Maximum Temperature	°C	80	80	80
Max. Amount of water at 40°C in a run (St	:./En.) L	-/242	317/321	369/374
Maximum Operation Pressure	bar	7	7	7
Number of Panels		1	1	1
Liquid Line	Pol.	1/4	1/4	1/4
Suction Line	Pol.	3/8	3/8	3/8
Electrical back-up power	W	1500	1500	1500
Gross Weight of Cylinder (St./En.)	Kg	-/73	62/83	74/95
Electrical Supply	V/Hz	230/50	230/50	230/50

Equipment with fluid pre-charge **Easy Install Economic Solar Solution**



With flares valves on the solar panel and on the thermodynamic group. With dielectric threads for water connections enameled cylinder (esm).

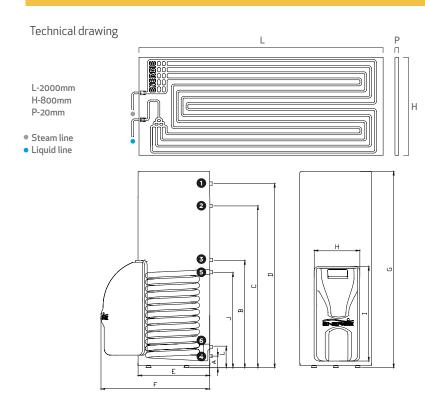
Dimension: (mm)		Eco 250i Eco 250esm	Eco 300i Eco 300esm
А	92	89	92
В	830	830	772
С	1161	1333/1341	1172
D	1289	1467	1315
Е	580	580	650
F	880	880	950
G	1364	1545/1543	1415
Н	370	370	370
ı	765	765	765
	•	_	_

1 (Hot Water)	3/4" Male
2 (PT Valve) *	1/2" Female
3 (Recirculation)	3/4" Male
4 (Cold Water)	3/4" Male
5 (Coil Inlet)	-
6 (Coil Outlet)	-

*Optional

Specifications		Eco 250ix	Eco 300ix
Nominal Capacity	L	250	300
Thermal Power (Med/Max)	W	1690/2900	1690/2900
Power Consumption (Med/Max)	W	390/550	390/550
Temperature (Factory Setpoint)	°C	53	53
Maximum Temperature	°C	80	80
Max. Amount of water at 40°C in a rur	(St./ErL)	308	360
Maximum Operation Pressure	bar	7	7
Number of Panels		1	1
Liquid Line	Pol.	1/4	1/4
Suction Line	Pol.	3/8	3/8
Electrical back-up power	W	1500	1500
Gross Weight of Cylinder (St./En.)	Kg	69	81
Electrical Supply	V/Hz	230/50	230/50

Allows the connection of another heat source **Easy Install** Equipment with fluid pre-charge



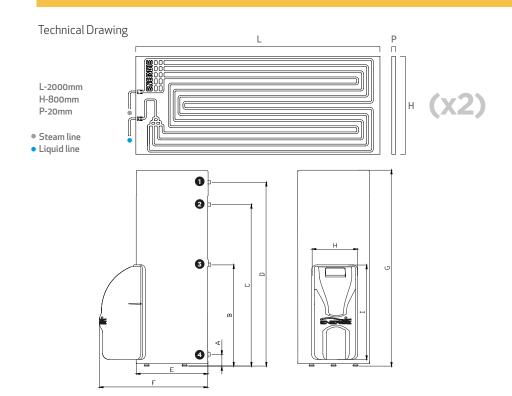
With flares valves on the solar panel and on the thermodynamic group.

Dimensions (mm)	Eco 250ix	Eco 300ix
А	89	92
В	830	772
С	1333	1172
D	1469	1315
Е	580	650
F	880	950
G	1545	1415
Н	370	370
I	765	765
J	696	621
L	205	221
1 (Hot W	ater) 3/	/4" Male
2 (PT Va	lve)* 1/2	"Female
3 (Recircu	lation) 1/2	." Female
4 (Cold V	Vater) 3/	/4" Male
5 (Coil I	nlet)	ı"Male
6 (Coil O	utlet)	ı" Male

* Optional

Specifications		Eco 250is	Eco 300is Eco 300esms	Eco 500is
Nominal Capacity	L	250	300	455
Thermal Power (Med/Max)	W	2800/4550	2800/4550	2800/4550
Power Consumption (Med/Max)	W	595/890	595/890	595/890
Temperature (Factory Setpoint)	°C	53	53	53
Maximum Temperature	°C	80	80	80
Max. Amount of water at 40°C in a run (St./En.)	L	317	369/374	537
Maximum Operation Pressure	bar	7	7	7
Number of Panels		2	2	2
Liquid Line	Pol.	3/8	3/8	3/8
Suction Line Suction Line	Pol.	1/2	1/2	1/2
Electrical back-up power	W	1500	1500	2200
Gross Weight of Cylinder (St./En.)	Kg	62	74/95	110
Electrical Supply	V/Hz	230/50	230/50	230/50

Superior Performance Equipment with fluid pre-charge Larger number of users



Includes Liquid Distributor. With dielectric threads for water connections enameled cylinder (esm).

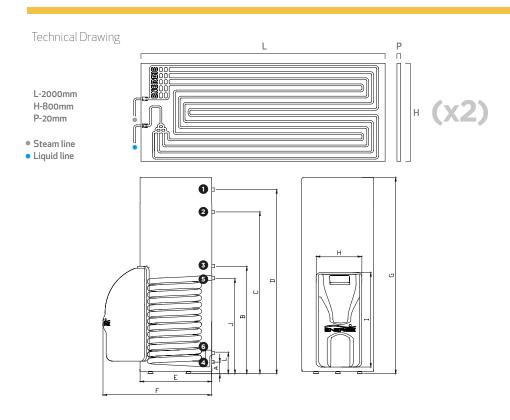
Dimension (mm)		Eco 300is Eco 300esms	Eco 500is
А	89	92	92
В	830	772	772
С	1333	1172	1784
D	1469	1315	1927
Е	580	650	650
F	880	950	950
G	1545	1415	1990
Н	370	370	370
I	765	765	765

	300is/300esm	s Eco500is
1 (Hot Water)	3/4" Male	1" Male
2 (PT Valve) *	1/2" Female	1/2" Female
3 (Recirculation)	3/4" Male	3/4" Male
4 (Cold Water)	3/4" Male	1" Male
5 (Coil Inlet)	-	-
6 (Coil Outlet)	-	-

*Optional

Specifications		Eco 250isx	Eco 300isx	Eco500isx
Nominal Capacity	L	250	300	455
Thermal Power (Med/Max)	W	2800/4550	2800/4550	2800/4550
Power Consumption (Med/Max)	W	595/890	595/890	595/890
Temperature (Factory Setpoint)	°C	53	53	53
Maximum Temperature	°C	80	80	80
Max. Amount of water at 40°C in a rur	(St./EnL)	308	360	525
Maximum Operation Pressure	bar	7	7	7
Number of Panels		2	2	2
Liquid Line	Pol.	3/8	3/8	3/8
Suction Line	Pol.	1/2	1/2	1/2
Electrical back-up power	W	1500	1500	2200
Gross Weight of Cylinder (St./En.)	Kg	69	81	121
Electrical Supply	V/Hz	230/50	230/50	230/50

Superior Performance Equipment with fluid pre-charge Larger number of users Allows the connection of another heat source



Includes Liquid Distribu	tor
--------------------------	-----

Dimensions (mm)	Eco 250isx	Eco 300isx	Eco 500isx
А	89	92	92
В	830	772	772
С	1333	1172	1784
D	1469	1315	1927
Е	580	650	650
F	880	950	950
G	1545	1415	1990
Н	370	370	370
1	765	765	765
J	696	621	1515
L	205	221	625
·	Foo	SENiev /SONiev	Emploiev

	Eco250isx/300is	x Eco500isx
1 (Hot water)	3/4" Male	1" Male
2 (PT valve)*	1/2" Female	1/2" Female
3 (Recirculation)	1/2" Female	1/2" Female
4 (Cold water)	3/4" Male	1" Male
5 (Coil Inlet)	1" Male	1" Male
6 (Coil Outlet)	1" Male	1" Male

*Optional

Accessories included in the equipment

Steel profiles to put up the panel (small and large sizes)

Safety group

Pressure reducing valve and manometer

M6 Screws + washers + panel setting rawlplug

List of equipment from the range

Model	No. of Panels	Enamelled	Stainless	Extra Coil	Litres	No. of People
Eco 200esm	1	Х			200	4 * † † †
Eco 250esm	1	Х			250	4 * * * * *
Eco 300esm	1	Х			300	5
Eco 250i	1		Х		250	4 * * * * *
Eco 300i	1		Х		300	5 ****
Eco 250ix	1		Х	()	250	4 * † † †
Eco 300ix	1		Х		300	5
Eco 300esms	2 🔲 🗀	Х			300	6 ***
Eco 250is	2 🔲 🗀		Х		250	5
Eco 300is	2 🔲 🗀		Х		300	6 ***
Eco 500is	2		Х		455	9
Eco 250isx	2		Х		250	5 ****
Eco 300isx	2 🔲 🗀		Х	()	300	6 ***
Eco 500isx	2		Х		455	9 #######

Probably the most developed solar water heater in the world

Specifications		Ecotop 100esm	Ecotop 200i	Ecotop 250i
Nominal Capacity	L	100	200	250
Thermal Power (Med/Max)	W	1250/2100	1250/2100	1250/2100
Power Consumption (Med/Max)	W	350/600	350/600	350/600
Temperature (Factory Setpoint)	°C	53	53	53
Maximum Temperature	°C	80	80	80
Max. Amount of water at 40°C in a run (5	St./En.) L	120	247	343
Maximum Operation Pressure	bar	7	7	7
Number of Panels		1	1	1
Liquid Line	Pol.	1/4	1/4	1/4
Suction Line	Pol.	3/8	3/8	3/8
Electrical back-up power	W	1500	1500	1500
Gross Weight of Cylinder (St./En.)	Kg	5	87	95
Electrical Supply	V/Hz	230/50	230/50	230/50

Equipment with fluid pre-charge **Easy Install Economic Solar Solution**

Dimensions

(mm)

C

D

Ε

Eco100esm Eco200i

1161

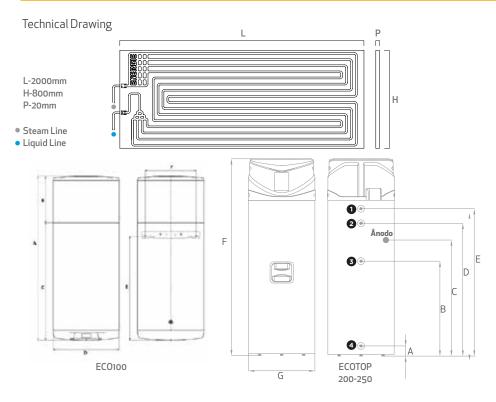
1289

1275 420

855

520

724


Eco 250i

830

1015

1341

1469

F	450	1720	1900
G		580	580
1 (Hot V	Vater)	3/4" Ma	le
2 (PT Va	ılve) *	1/2" Fem	ale
3 (Recirci	ulation)	3/4" Ma	le
4 (Cold)	Water)	3/4" Ma	le

6 (Coil Outlet) *Optional

5 (Coil Inlet)

With flares valves on the solar panel and on the thermodynamic group. With dielectric threads for water connections enameled cylinder (esm).

Specifications		Ecotop 200ix	Ecotop 250ix
Nominal Capacity	L	195	245
Thermal Power (Med/Max)	W	1250/2100	1250/2100
Power Consumption (Med/Max)	W	350/600	350/600
Temperature (Factory Setpoint)	°C	53	53
Maximum Temperature	°C	80	80
Max. Amount of water at 40°C in a run	(St./ErL)	240	337
Maximum Operation Pressure	bar	7	7
Number of Panels		1	1
Liquid Line	Pol.	1/4	1/4
Suction Line	Pol.	3/8	3/8
Electrical back-up power	W	1500	1500
Gross Weight of Cylinder (St./En.)	Kg	94	107
Electrical Supply	V/Hz	230/50	230/50

Allows the connection of another heat source **Easy Install** Equipment with fluid pre-charge

Dimensions

(mm)

Α

В

C

D

Ε

F

G

Н

Eco 200ix

89

177

696

830

1015

1161

1289

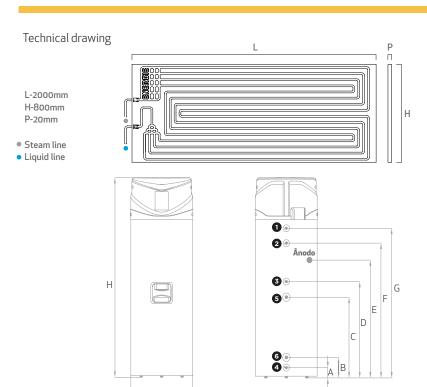
1720

Eco 250ix

89

177

696


830

1015

1341

1469

1900

1	580	580
1 (Hot Water)		3/4" Male
2 (PT Valve)*		1/2" Female
3 (Recirculation	n)	1/2" Female
4 (Cold Water)	3/4" Male
5 (Coil Inlet)		1" Male
6 (Coil Outlet)	1" Male
* Optional		

With flares valves on the solar panel and on the thermodynamic group.

Accessories included in the equipment

Steel profiles to put up the panel (small and large sizes)

Safety group

Pressure reducing valve and manometer

M6 Screws + washers + panel setting rawlplug

List of equipment from the range

Model	No. of Panels	Enameled	Stainless	Extra Coil	Litres	No. of People
Ecotop 100esm	1	X			100	2
Ecotop 200i	1		X		200	4 †††
Ecotop 250i	1		Х		250	5 * † † † †
Ecotop 200ix	1		Х		195	4
Ecotop 250ix	1		Х		245	5 * † † † †

SOLAR BOX RETRO FITS TO THE **EXISTING CYLINDER**

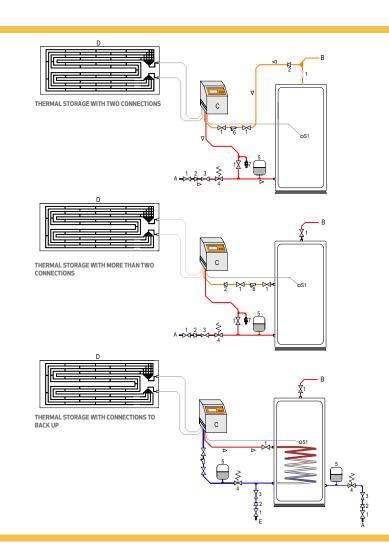
- IDENTICAL FUNCTION PRINCIPLE OF AN ECO
- THE SOLAR BOX CAN BE HUNG ON THE WALL OR BE PLACED ON THE FLOOR
- VERY COMPACT UNIT
- LOW CONSUMPTION
- ADAPTS TO ALL KINDS OF CYLINDERS
- EQUIPMENT WITH FLUID PRE-CHARGE R134A
- AVAILABLE IN MODELS OF 1 OR 2 TERMODYNAMIC SOLAR PANELS

Check warranty conditions

KEEP YOU DHW CYLINDER AND TURN IT INTO AN **EFFICIENT SOLAR SYSTEM**

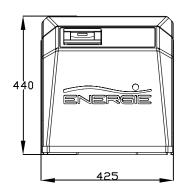
HOT WATER DAY & NIGHT, HAIL, RAIN, WIND OR SHINE **SAVINGS UP TO**

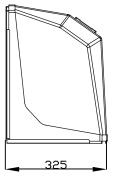
80%


34 | ENERGIE CATALOGUE **Solar Box**

Thermodynamic Solar System domestic hot water

Diagram


Caption ${\sf Sectioning\,Valve}$ 2 Check Valve 3 Pressure Reducer 4 Safety Group 5 Expansion Vase 6 7 Discharge Valve Α Network В Hot water Outlet C SolarBox D Thermodynamic Panel Ε Network

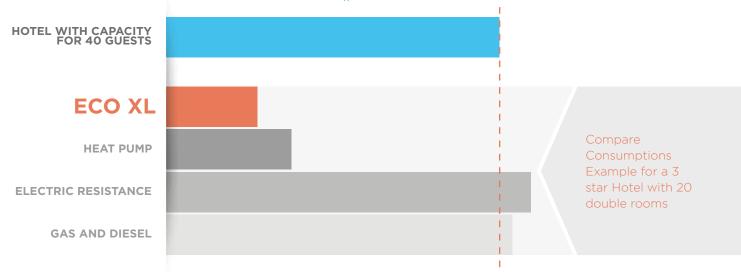

Temperature Sensor

Technical drawing

S1

Specifications		1 Panel	2 Panels
Provided Thermal Powera (Méd./Máx.)	W	1690/2900	2800/4550
Power Consumption (Méd./Máx.)	W	390/550	595/890
Electrical Supply	V/Hz	230/50-60	230/50-60
Cooling Fluid	-/kg	R134a / 0,8	R134a/1,0
Maximum Temperature	°C	55	55
Maximum Operation Pressure (Water)	bar	7	7
Hydraulic Connection (Inlet/Outlet)	Pol.	1/2 1/2	1/2 1/2
Weight (Solarbox/Panel)	kg	23,5/8	23,5/2×8
Flare Connections (Suction/Liquid)	Pol.	3/8 1/4	1/2 3/8
Energy Class Tapping Profile		A L	A XL

Includes hydraulic filter and anti-vibration system



Energy Diagram

Energy needed to raise the temperature of 1000L of water from 15°C to 55°C. Calculation based on norm EN 16147.

Thermodynamic Solar Solution to heat domestic water for industrial use

Equipment with 6 to 40 solar panels. Capacities of 1000 to 6000 litres. Stainless steel cylinders AISI316.

HOTELS, HOSPITALS, SCHOOLS, SPORTS HALLS, DUSTRY WITH DOMESTIC ECONOMY

THE MOST EVOLVED INDUSTRIAL SOLUTION

- POSSIBILITY OF ADAPTING THE EXISTING INSTALLATION WITHOUT THE NEED FOR CIVIL CONSTRUCTION WORKS.
- HEAT IS CAPTURED THROUGH SOLAR RADIATION, ENVIRONMENT TEMPERATURE, RAIN, WIND AND EVEN SNOW.
- THE HEAT PRODUCED ON COLDER DAYS, EVEN AT NIGHT IS SUFFICIENT TO ATTAIN THE WATER TEMPERATURE DESIRED.
- THE SOLAR PANELS ARE LIGHT, DISCREET AND HAVE VERSATILITY IN TERMS OF WHERE TO PUT THEM.
- THE ENERGY CONSUMPTION OF THE EQUIPMENT IS REDUCED DUE TO A VERY EFFICIENT COMPRESSOR.

- 1 Magnesium Anode
- 2 High density insulation
- 3 DHW Cylinder
- 4 Water/water serpentine heat exchanger
- 5 Finned tube heat exchanger
- 6 Outside coating

Versions with 1 or 2 Cylinders

Stainless Steel AISI316 Cylinders with finned tube heat exchanger

With or without water/water heat exchanger

Equipment from 6 up to 40 Thermodynamic Solar Panels

Capacities from 1000 up to 6000 litres

- DOUBLE WALL CONDENSERS
- 3rd GENERATION SOLAR ENERGY
- SOLAR HOT WATER UP TO 60°C AVAILABLE
- ALMOST NON-EXISTENT MAINTENANCE
- UP TO 3 CYCLES OF HOT WATER REPLACEMENT SYSTEM CAPACITY PER DAY

Check warranty conditions

40 | Exercise Catalogue Eco 1000 / 1500 / 2000

Thermodynamic Solar Systems for Large Volumes of Domestic Hot Water with a Cylinder

ECO 8888 | 88 and ECO 8888 | X 88 1000 to 2000

1 Stainless Steel Cylinder with Simple Flange 1 High Efficiency Finned Tube Heat Exchanger

Optional Water/Water Serpentine Heat Exchanger

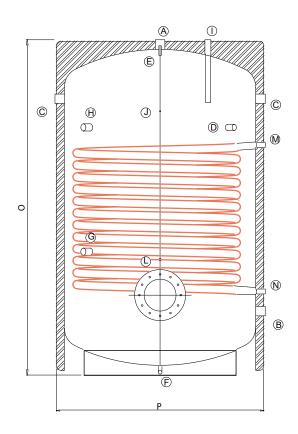
1 Solar Block

Model	Litres	Solar Block
Eco 1000	1000	6
Eco 1500	1500	12
Eco 2000	2000	12,16

8888 Represents the capacity of the equipment **88** Represents the number of panels

Thermodynamic Solar Systems for Big Volumes of Domestic Hot Water with two Cylinders

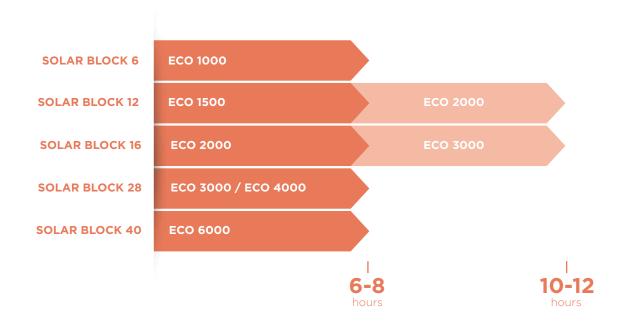
ECO 8888 ID 88 and ECO 8888 IXD 88 2000 to 6000



2 Stainless Steel Cylinders with Simple Flange2 High Efficiency Finned Tube Heat ExchangersOptional Water/Water Serpentine Heat Exchanger1 Solar Block

Model	Litres	Solar Block
Eco 2000	2x1000	12,16
Eco 3000	2x1500	16,28
Eco 4000	2x2000	28
Eco 6000	2x3000	40

STAINLESS Cylinder


Letter	1000 Inox	1500 Inox	2000 Inox	3000 Inox
А	1"1/4 F	1″1/2 F	2" F	2" F
В	1″1/4 F	1″1/2 F	2" F	2" F
С	1″1/4 F	1″1/2 F	2" F	2" F
D	1"1/4 F	1"1/4 F	1″1/4 F	1″1/4 F
E	1/2" F	1/2" F	1/2" F	1/2"F
F	1" F	1" F	1" F	1" F
G	1/2″F	1/2" F	1/2" F	1/2" F
Н	1/2" F	1/2" F	1/2″F	1/2" F
1	1" F	1"1/4 F	1″1/4 F	1″1/4 F
J	1/2" F	1/2" F	1/2" F	1/2" F
L	1/2" F	1/2″F	1/2" F	1/2″ F
М	1"1/4 F	1"1/4 F	1″1/4 F	1″1/4 F
N	1"1/4 F	1″1/4 F	1″1/4 F	1″1/4 F
0	2010mm	2100mm	2160mm	2300mm
Р	930mm	1140mm	1300mm	1500mm

 $\textbf{Nota} \, \mathsf{Technical} \, \mathsf{drawing} \, \mathsf{of} \, \mathsf{the} \, \mathsf{Solar} \, \mathsf{Block} \, \mathsf{on} \, \mathsf{page} \, \mathsf{62}$

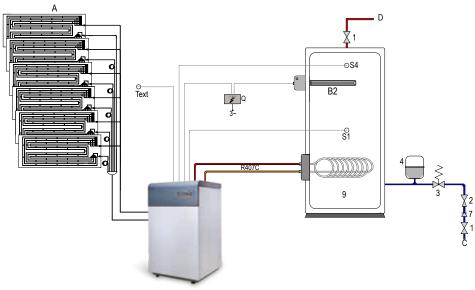
Average period of time necessary for the **total volume** of water in the equipment to reach the desired temperature

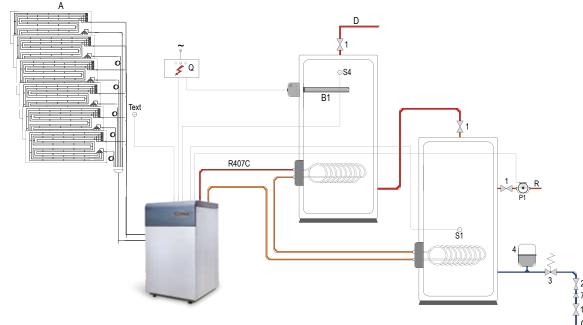
Model		Eco 1000	Eco 1500	Eco 2000	Eco 3000	Eco 4000	Eco 6000
Solar Panels	Nº.	6	12	12/16	16/28	28	40
Nominal Capacity	Litres	1000	1500	2000	3000	4000	6000
Maximum Thermal Pow	er W	7500	16580	16580/24210	24210/38220	38220	54600
Power Consumption	W	1230	2010	2010/3210	3210 / 5650	5650	8450
Thermal storage	Unit.	1	1	1 ou 2	1 ou 2	2	2
Users*		22	34	45	68	90	135

^{*}Considering an average consumption of 50 litres/person/day

Stainless Steel Cylinders

Name	Nominal Capacity	Cylinder	N. Panels	N. Flanges	Coil	Electrical Suply*
Eco 1000l6	1000	Stainless	6	1	No	SorT
Eco 1000IX6	1000	Stainless	6	1	Yes	SorT
Eco 1500 l 12	1500	Stainless	12	1	No	SorT
Eco 1500 X12	1500	Stainless	12	1	Yes	SorT
Eco 2000l12	2000	Stainless	12	1	No	SorT
Eco 2000 X12	2000	Stainless	12	1	Yes	SorT
Eco 2000ID12	2×1000	Stainless	12	1	No	SorT
Eco 2000 XD12	2×1000	Stainless	12	1	Yes**	SorT
Eco 2000 16	2000	Stainless	16	2	No	SorT
Eco 2000 X16	2000	Stainless	16	2	Yes	SorT
Eco 2000ID16	2×1000	Stainless	16	1	No	SorT
Eco 2000 XD16	2×1000	Stainless	16	1	Yes**	SorT
Eco 3000l16	3000	Stainless	16	2	No	SorT
Eco 3000IX16	3000	Stainless	16	2	Yes	SorT
Eco 3000ID16	2×1500	Stainless	16	1	No	SorT
Eco 3000IXD16	2×1500	Stainless	16	1	Yes**	SorT
Eco 3000l28	3000	Stainless	28	2	No	T
Eco 3000IX28	3000	Stainless	28	2	Yes	Т
Eco 3000ID28	2×1500	Stainless	28	1	No	Т
Eco 3000IXD28	2×1500	Stainless	28	1	Yes**	Т
Eco 4000ID28	2×2000	Stainless	28	1	No	Т
Eco 4000IXD28	2×2000	Stainless	28	1	Yes**	Т
Eco 6000ID40	2×3000	Stainless	40	1	No	Т
Eco 6000IXD40	2×3000	Stainless	40	1	Yes**	Т


^{*} The suffix Single-Phase (S) or Three-Phase (T) is added at the end of each designation.


^{***} Only one of the heaters has a serpentine.

The Thermodynamic Solar Solutions aimed at heating domestic water for industrial use have enough versatility in order for their application to meet the needs of the case at hand.

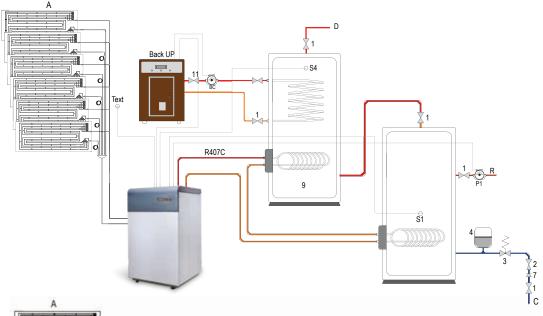
ECO XLStandard Installation with Electrical Support

ECO XLInstallation with 2 Cylinders in Series with Electrical Support

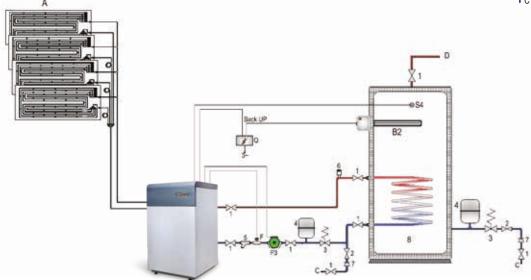
1 Shut-off Valve	7 Check Valve (non-return)	D Hot Water Ou
2 Pressure Reducer	9 Thermal Storage	P1 Circulating Pu
3 Security Valve	A Thermodynamic Solar Panels	S1 Temperature S
4 Expansion Valve	C Cold Water Inlet	S4 Temperature S

D Hot Water Outlet	Text Outside Thermostat
P1 Circulating Pump 1	B1 Resistance Kit (Support)
S1 Temperature Sensor S1	B2 Resistance Kit (Support)
S4 Temperature Sensor S4	Q Control Box

Choose your model


Example

ECO 3000 IXD 28 T ECO of 3000 litres capacity with 2 Stainless steal cylinders with a high productivity exchanger, 28 panels, three-phase version.



It is also in thinking about the needs of the professionals in this sector that we make an ample range of equipment available so that any new or existing installation is no longer a challenge and is simplified. The focus is always on economy and efficiency.

ECO XL Installation with 2 Cylinders in Series with Boiler support

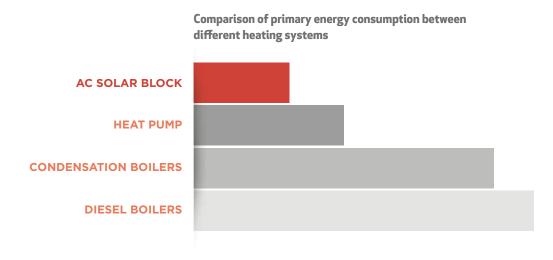
ECO XL Use of Existing Cylinder

1 Shut-off Valve	7 Check Valve (non-return)	D Hot Water Outlet	BC Boiler Circulator Pump
2 Pressure Reducer	9 Thermal Storage	S1 Temperature Sensor S1	CA Boiler (Support)
3 Security Valve	A Thermodynamic Solar Panels	S4 Temperature Sensor S4	
4 Expansion Valve	C Cold Water Inlet	Text Outside Thermostat	

- Model Eco XL
- 2 Capacity (litres) 1000, 1500, 2000, 3000, 4000 ou 6000 litres
- **3** Cylinder Material i (Stainless)

- Supplementary Coil (Stainless 6 Cylinders) X (optional)
- * Cylinders

D (Available in models Eco 2000, Eco 3000, Eco 4000 e Eco 6000) (optional)


- **Number of Solar Panels that** make up the system
- **7** Single-phase **T** Three-phase
- *Optional and when applicable **8888** Represents the capacity of equipment

Advantages in acquiring a Solar Block for **Central Heating:**

- LOW CO, EMISSIONS
- WITH ELECTRICITY PRICES GOING UP ALL THE TIME, THE RIGHT INVESTMENT IS IN EFFICIENCY TO OBTAIN MAXIMUM SAVING
- RENEWABLE ENERGY IN YOUR HOME
- MAKE YOUR HOME ENVIRONMENTALLY FRIENDLY

SOLAR BLOCK

Thermodynamic Solar Solution for central heating

Equipment with 6 to 40 solar panels Area to be heated from 90 to 450 m² High quality stainless steel plate heat exchanger

COMFORT, CONVENIENCE WITH MAXIMUM ECONOMY

- SUPER EFFICIENT ENVIRONMENT HEATING AT LOW.
- NON-EXISTENT PROGRAMMED MAINTENANCE.
- POSSIBILITY OF JOINING ALL HOUSE HEATING EQUIPMENT INTO JUST ONE SOLUTION.
- POSSIBILITY OF ALTERNATING BETWEEN ENVIRONMENT HEATING IN THE COLDER SEASONS AND SWIMMING-POOL HEATING IN THE WARMER SEASONS.
- ABSOLUTE GUARANTEE OF PRODUCTION OF HOT WATER FOR HEATING AT 55°C DURING THE WINTER.
- HIGHLY EFFICIENT SCROLL COMPRESSOR.
- HIGH QUALITY STAINLESS STEEL PLATES EXCHANGER.
- FREE OF DEFROST CYCLES.
- SMALL DIMENSION INDOOR UNIT.
- CENTRAL HEATING WITHOUT CHIMNEYS AND BURNT GASES, TOTALLY ENVIRONMENTALLY FRIENDLY.
- WORKS WITH UNDERFLOOR HEATING, RADIATORS, CONVECTORS OR FAN COILS.
- ELECTRONIC EXPANSION VALVE.

MAXIMUM EFFICIENCY

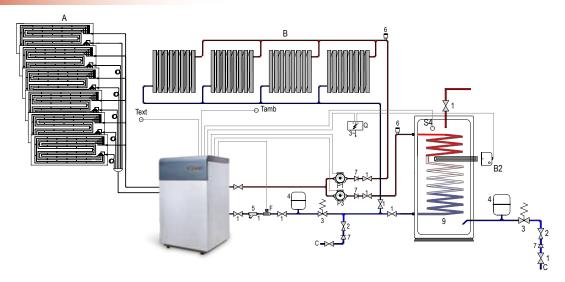
Stainless Steel **Plates Exchanger**

Note: Technical drawing of Solar Block on page 62 Simplified representative diagram

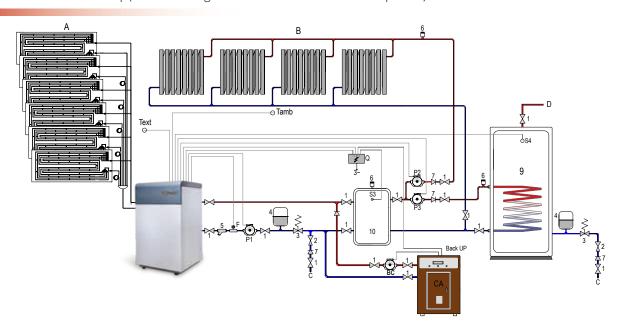
Thermodynamic Solar System central heating

Model		Solar Block 6	Solar Block 12	Solar Block 16	Solar Block 28	Solar Block 40
Solar Panels		6	12	16	28	40
Maximum Thermal Power.	W	7500	16580	24210	38220	54600
Power Consumption Min.	W	1230	2010	3210	5650	8450
Water Flow r	m³/h	0,7	1,0	1,5	3,0	5,0
Pressure Drop	kPa	3,0	9	7	11	36
Electrical Supply		1~/230	V / 50 Hz or 3~/ 400	V / 50 Hz	3~/400	0V / 50 Hz
Protection (M/T)*	А	16/6	25/10	2x16/16	20	25
Hydraulic Connections	Pol.	1	1	1	1	1
Block Gross Weight	kg	48	96	128	210	320

^{*}Magnetothermic Protection Switch (S, for the Single-Phase version and T for the Three-Phase version) to be fitted by the installer.


Model	N. Panels	Area to be heated*	Cylinder	Electrical Supply
Solar Block 6	6	90 m²	-	230V or 400V
Solar Block 12	12	150 m²	-	230V or 400V
Solar Block 16	16	220 m²	-	230V or 400V
Solar Block 28	28	300 m²	-	400V
Solar Block 40	40	450 m²	-	400V
Solar Block 6 Plus	6	90 m²	200	230V or 400V
Solar Block 12 Plus	12	150 m²	300	230V or 400V
Solar Block 16 Plus	16	220 m²	300	230V or 400V
Solar Block 28 Plus	28	300 m ²	500	400V
Solar Block 40 Plus	40	450 m²	500	400V

^{*}Does not relieve the sizing of the solar system according to the building, installation and geographic location.


Central heating

Combined Solution (Central heating + Domestic Hot Water)

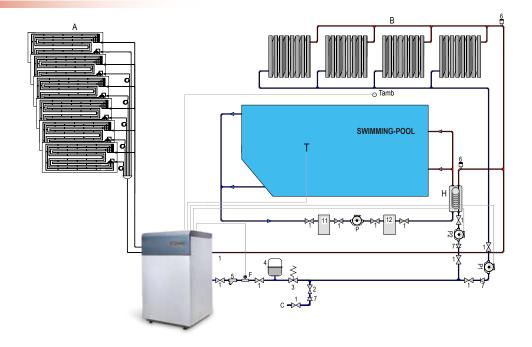
Central heating

Combined Solution with Backup (Central Heating + Domestic Hot Water with a backup boiler)

7 Check Valve (non-return)	D Hot Water Outlet	S4 Temperature Sensor S4
9 Thermal Storage	F Flow Switch	Tamb Environment Thermostat
10 Buffer Tank	P1 Circulating Pump 1	Text Outside Thermostat
A Thermodynamic Solar Panels	P2 Circulating Pump 2	BC Boiler Circulator Pump
B Environment Heating	P3 Circulating Pump 3	B2 Resistance Kit (Support)
C Cold Water Inlet	S3 Temperature Sensor S3	Q Control Box
	9 Thermal Storage 10 Buffer Tank A Thermodynamic Solar Panels B Environment Heating	9 Thermal Storage F Flow Switch 10 Buffer Tank P1 Circulating Pump 1 A Thermodynamic Solar Panels P2 Circulating Pump 2 B Environment Heating P3 Circulating Pump 3

Choose your model

SOLAR BLOCK | BB P


Central heating

Standard Installation

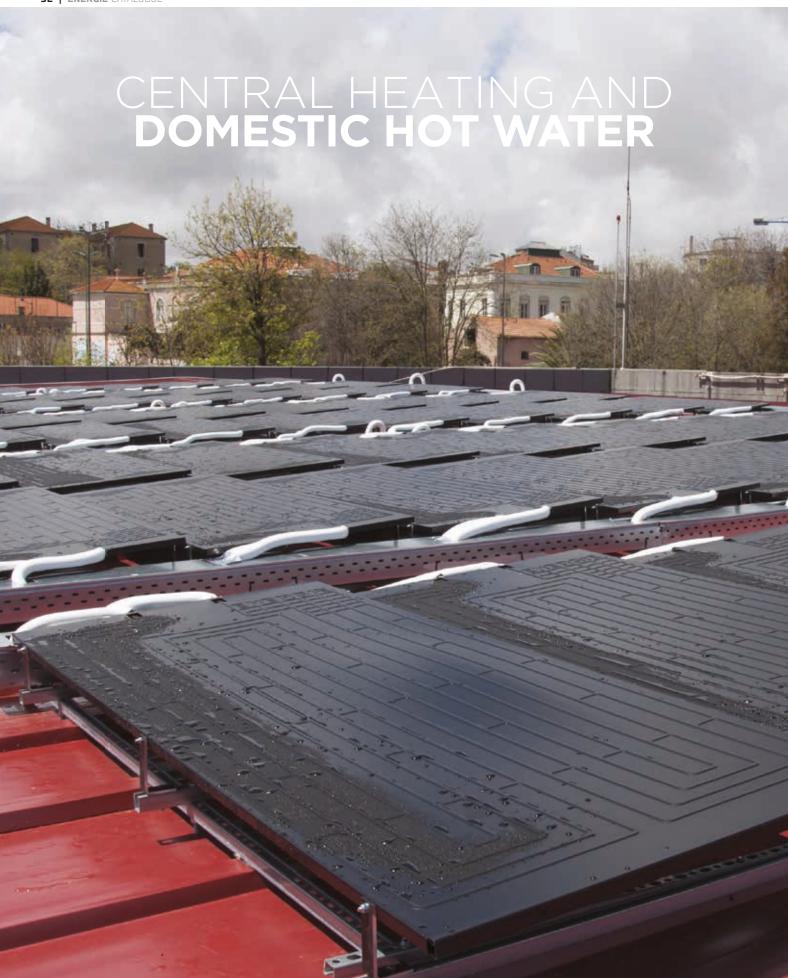
Central heating + Swimming-pool

Combined Installation

1 Shut-off Valve	6 Drain Valve	B Environment Heating	Tamb Environment Thermostat
2 Pressure Reducer	7 Check Valve (non-return)	C Cold Water Inlet	T Thermostat
3 Security Valve	11 Pre-filter	F Flow Switch	G Swimming-pool
4 Expansion Valve	12 Filter	P1 Circulating Pump 1	H Water/Water Titanium Heat Exchanger
5 Filter	A Thermodynamic Solar Panels	P2 Circulating Pump 2	

Model

Environment Heating Solar Block


- 2 Number of Solar Panels 6, 12, 16, 28, or 40
- **3** Combined Solution

ACentral Heating or Central Heating

+ Domestic Hot Water (Plus)

- *4 DHW Cylinder capacity of the Combined Solution Capacities available are 200, 300 or 500 litres
 - **5** Single-Phase Version **T** Three-Phase Version
 - * Only for the Combined Solution if applicable

SOLAR BLOCK ULTRA ULTRA PLUS

Thermodynamic Solar Solution for central heating and domestic hot water

Equipment with 12 and 16 solar panels

CENTRAL HEATING AND DOMESTIC HOT WATER

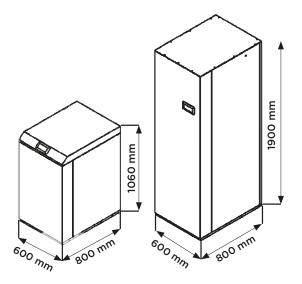
THERMODYNAMIC SOLAR SYSTEM **CENTRAL HEATING DOMESTIC HOT WATER**

THE ULTRA SOLAR BLOCK IS AN ALL-IN-ONE SOLUTION. A THERMODYNAMIC SOLAR HEAT PUMP BUILT TO THE HIGHEST STANDARDS OF QUALITY WITH OUTSTANDING PERFORMANCE, WITH A COMPACT DESIGN, IT PERFORMS CENTRAL HEATING AND PRODUCES DOMESTIC HOT WATER, USING THE LATEST DC INVERTER TECHNOLOGY.

- **ERP READY**
- SOLAR PERFORMANCE
- SIMPLE INSTALLATION "PLUG AND USE"
- INDOOR UNIT REQUIRES SMALL SPACE (<1M2)
- INTEGRATED DHW DEPOSIT (SOLAR BLOCK ULTRA PLUS) OF 200 LITERS IN AISI 316L STAINLESS STEEL
- DHW PRODUCTION UP TO 70°C IN HEAT PUMP MODE THROUGH HEAT RECOVERY
- MAXIMUM DISTANCE BETWEEN INTERIOR UNIT AND OUTSIDE UP TO 20M.
- DC INVERTER TECHNOLOGY
- CAREL DISPLAY
- SOFT START SYSTEM
- HYDRAULIC KIT INCLUDED
- COMPLETE VERSATILITY

Thermodynamic Solar System central heating and domestic hot water

INSIDE UNIT				ULTRA12	ULTRA PLUS12	ULTRA16	ULTRA PLUS16
Heating Capacity (1)	Power supplied		kW		5 - 19	8	3 - 26
	Maximum power supplied		kW	1	8,70		25,8
Heating Capacity (2)	Nominal power supplied		kW	1	0,30		16,2
	Nominal consumption		kW		2,15		3,45
	COP		kW		4,80		4,7
Heating Energy Class					<u>A++</u>		<u>A++</u>
Dimensions	HxWxD		cm	106X60X80	195x60x80	106X60X80	195x60x80
Weight			Kg	115	243	115	243
Maximum temperature			°C	1		60	
Hydraulic Connections		Inlet/Outlet			1	"M	
Domestic Hot Water ⁽³⁾	Tank		L	-	200	-	200
	Material			-	INOX AISI 316L	_	INOX AISI 316L
	Temp. max. (compressor o	nly)	°C	-	70	-	70
	Electrical backup		W	-	1500	-	1500
	Water connections	Cold / Hot		_	3/4"M	_	3/4"M
	COP DHW ⁽³⁾			_	3,27	_	3,27
	Tapping profile			_	L	_	L
	Efficiency		%	-	138	_	138
	Energy Class DHW			-	Α+	-	Α+
Refrigerant	Туре			1	R4	410A	
	Preload		Kg		-	3,5	
	Connections	Liquid			1,	/2"	
		Steam			3	5/4"	
Sound pressure	(distance 10m)		dBA			65	
Electrical Supply		Type			230V (or 400 V	
	Electric cable	230V	mm ²		3	G6	
		400V	mm ²		5	G4	
	Protection Circuit Breaker	230V			4	16A	
		400V			3	32A	
OUTSIDE UNIT - SOLAI	R PANELS						
Number					12		16
Dimensions	HxWxD		mm		200x	800x20	
Weight			Kg			8	
Type					Passive Sol	ar Evaporator	
Material					Anodized	d aluminum	
CONNECTION BETWEE							
Maximum nominal dista	nce		m			20	
Maximum Dron			m			15	

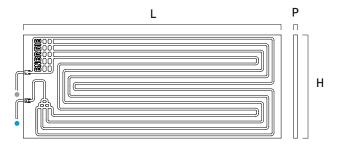

Maximum Drop m

O According to EN14511; Air temperature DB/WB 14°C/13°C; Water temperature inlet/outlet 30°C/35°C; Solar radiation 800w/m²

DB/WB 7°C/6°C; Water temperature inlet/outlet 30°C/35°C; Solar radiation 400w/m² | (3) According to EN 16147, A 14 / W 10-54 According to EN14511; Air temperature

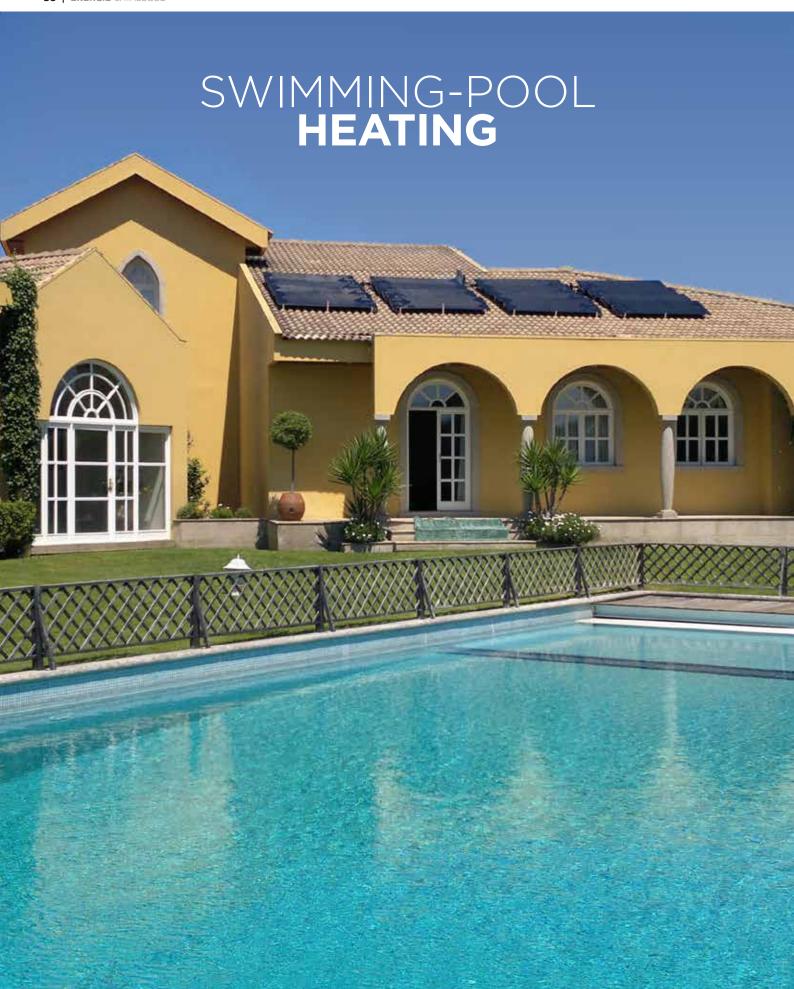
Technical Drawing

INSIDE UNIT



SOLAR PANELS

L-2000mm


H-800mm P-20mm

- Steam line
- Liquid line

X12 or x16

SOLAR BLOCK SWIMMING-POOL

Thermodynamic Solar Solution for Swimming-pools

Equipment from 6 up to 40 solar panels

SWIMMING-POOL HEATING

HEATED SWIMMING-POOL **OF THE YEAR**

Check warranty conditions

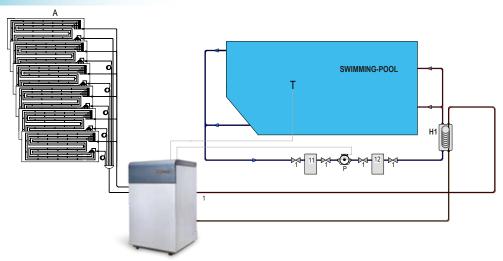
- SWIMMING-POOL HEATED ALL YEAR ROUND WITH THE LOWEST COST IN THE MARKET.
- NON-EXISTENT PROGRAMMED MAINTENANCE.
- POSSIBILITY OF JOINING ALL HOUSE HEATING EQUIPMENT INTO JUST ONE SOLUTION.
- POSSIBILITY OF ALTERNATING BETWEEN ENVIRONMENT HEATING IN THE COLDER SEASONS AND SWIMMING-POOL HEATING IN THE WARMER SEASONS.
- HIGHLY-RESISTANT AND DURABLE TITANIUM EXCHANGER.
- HIGHLY EFFICIENT SCROLL COMPRESSOR.
- FREE OF DEFROST CYCLES.
- SMALL DIMENSION INDOOR UNIT.
- ELECTRONIC EXPANSION VALVE.

MAXIMUM EFFICIENCY

Thermodynamic solar system swimming-pool heating

Model		Solar Block 6	Solar Block 12	Solar Block 16	Solar Block28	Solar Block 40
Solar Panels		6	12	16	28	40
Maximum Thermal Power	W	7500	16580	24210	38220	54600
Power Consumption Min.	W	1230	2010	3210	5650	8450
Electrical Supply		1~/230V/50 Hz or 3~/400V/50 Hz		V/50 Hz	3~/400)V/50 Hz
Protection (M/T)*	Α	16/6	25/10	2x16/16	20	25
Gross Weight	kg	48	96	128	210	320

^{*}Magnetothermic protection switch (S, for the Single-phase version and T, for the Three-phase version) to be fitted by the installer.


Model	N. Panels	Volume to be heated* (Water Mirror Surface)	Cylinder	Electrical Supply
Solar Block 6	6	16 m ²	-	230V or 400V
Solar Block 12	12	40 m ²	-	230V or 400V
Solar Block 16	16	60 m ²	-	230V or 400V
Solar Block 28	28	120 m ²	-	400V
Solar Block 40	40	150 m ²	-	400V
Solar Block 6 Plus	6	16 m ²	200	230V or 400V
Solar Block 12 Plus	12	40 m ²	300	230V or 400V
Solar Block 16 Plus	16	60 m ²	300	230V or 400V
Solar Block 28 Plus	28	120 m ²	500	400V
Solar Block 40 Plus	40	150 m ²	500	400V

^{*}Does not relieve the sizing of the solar system according to the swimming pool, installation and geographic location.

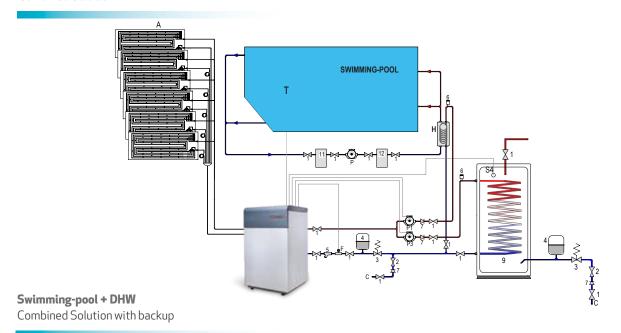
Swimming-pool Heating

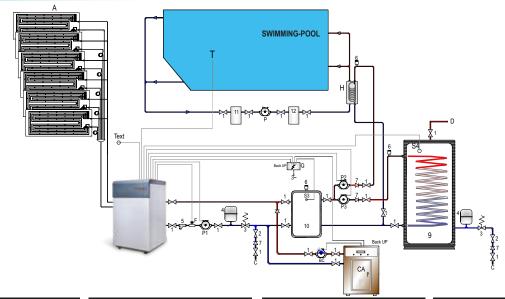
Standard Installation

Swimming-pool + Dehumidifier

Combined Solution

1 Shut-off Valve	6 Drain Valve	C Cold Water Inlet	T Thermostat
2 Pressure Reducer	7 Check Valve (non-return)	F Flow Switch	G Swimming-pool
3 Security Valve	11 Pre-filter	P1 Circulating Pump 1	H Water/water titanium heat exchanger
4 Expansion Valve	12 Filter	P2 Circulating Pump 2	TH Thermo-Hygrometer
5 Filter	A Thermodynamic Solar Panels	P3 Circulating Pump 3	H1 Gas/Water Titanium Heat Exchanger


Choose your model

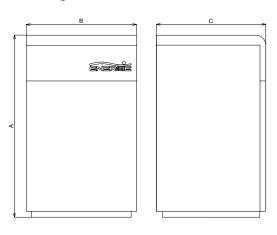


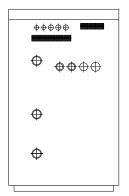
Swimming-pool + DHW

Combined Solution

1 Shut-off Valve	9 Thermal Storage	P1 BCirculating Pump 1	BC Boiler Circulator Pump
2 Pressure Reducer	11 Pre-filter	P2 Circulating Pump 2	Q Control Box
3 Security Valve	12 Filter	P3 Circulating Pump 3	G Swimming-pool
4 Expansion Valve	A Thermodynamic Solar Panels	S3 Temperature Sensor S3	H Water/water titanium heat exchanger
5 Filter	C Cold Water Inlet	S4 Temperature Sensor S4	
6 Drain Valve	D Hot Water Outlet	Text Outside Thermostat	
7 Check Valve (non-return)	F Flow Switch	T Thermostat	

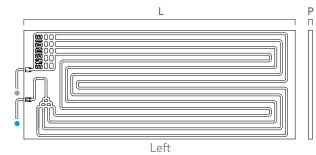
- 1 Model
 - Swimming-pool Heating Solar Block
- 2 Numbers of Solar Panels 6, 12, 16, 28, ou 40
- 3 Combined Solution

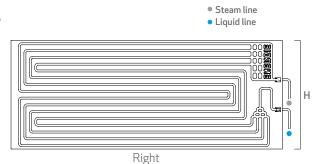

Central Heating or Central Heating + Domestic Hot Water (Plus)


- 4 Capacity
 - Being a Plus Solution the Available Capacities are 200, 300 or 500 litres
- **5 M** Single-Phase Version **T** Single-Phase Version
- * Only for the Combined Solution if applicable

SOLAR BLOCK COMMON TO ECO XL, CENTRAL HEATING AND SWIMMING-POOL

Technical drawing

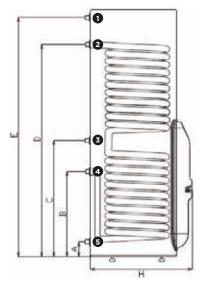


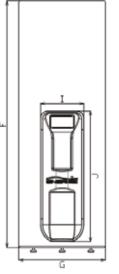


	6 to 16 Panels	28 to 40 Panels
А	915	915
В	555	654
С	550	634,5

LEFT AND RIGHT THERMODYNAMIC SOLAR PANEL

Technical drawing | Measured in mm: L-2000 | H-800 | P-20





DHW CYLINDERS OF THE COMMON PLUS SOLUTIONS FOR CENTRAL HEATING AND SWIMMING-POOL

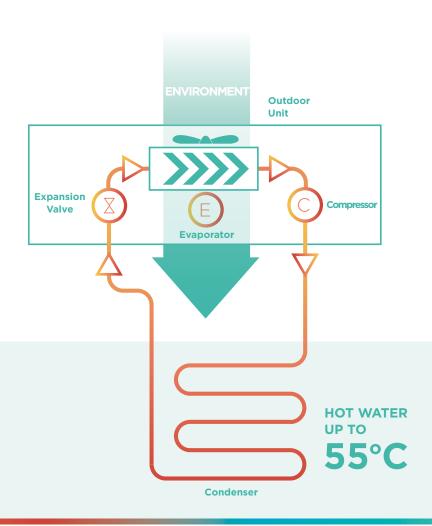
Technical drawing

	300 HP	500 HP
А	74 mm	92mm
В	681 mm	625 mm
С	815 mm	1784 mm
D	1251 mm	1515 mm
Е	1671 mm	1927 mm
F	1750 mm	1990mm
G	650 mm	650 mm
Н	950 mm	950 mm
I	290 mm	290 mm
J	879 mm	879 mm
1 (Hot V	Vater)	4 (Coil Outlet)
2 (Coil	Inlet)	5 (Cold Water)
3 (Reci	rculation)	

AQUAPURA SPLIT E MONOBLOC HEAT PUMPS FOR DOMESTIC WATER

ENERGIE PRESENTS

AQUAPURA SPLIT AQUAPURA MONOBLOC



AQUAPURA

It is a system designed to get an optimal regulation of domestic water heating. The heat pump is a modern, efficient and clean solution that guarantees comfort in your home, always respecting the environment.

It is an intelligent way of using nature's resources in order to improve your quality of life. In adopting this solution you will be making a serious commitment in terms of reducing harmful emissions to our atmosphere thus contributing to the natural balance of the planet.

AQUAPURA SPLIT AQUAPURA MONOBLOC

Operating Principle

There is a cooling liquid that is pumped to an outdoor heat exchanger (evaporator).

Here the liquid, with the help of a fan, absorbs the energy from the atmosphere to the temperature differential obtained outdoors. During this process, the liquid changes to a gaseous state.

The gaseous state is sucked in by the mechanical part of the system, the compressor. Here it is compressed,

pressure goes up and consequently the liquid temperature increases.

After this, the liquid travels to a second inside heat exchanger (condenser) and transfers heat to the water in the cylinder.

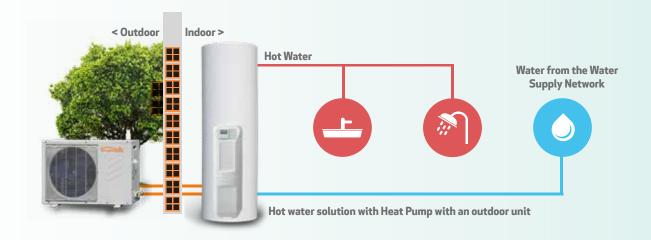
The fluid goes into liquid state by cooling down. The liquid pressure is reduced due to a strangulation that happens in the expansion valve and the process starts again.

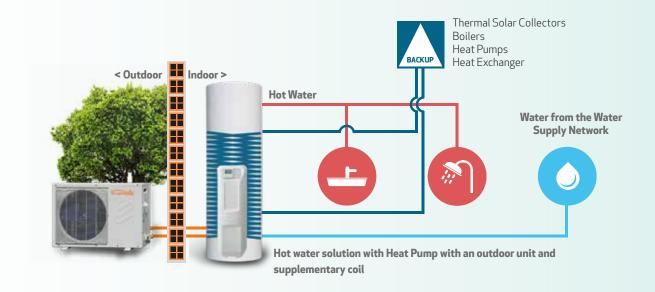
75%

AQUAPURA SPLIT

Heat Pumps for Domestic Hot Water

Available with capacities of 160, 250, 300 and 500 litres. Cylinder in stainless steel





DOMESTIC HOT WATER

ELECTRONIC CONTROLLER

BUTTON FUNCTION

(ON/OFF)

(OK) Confirmation

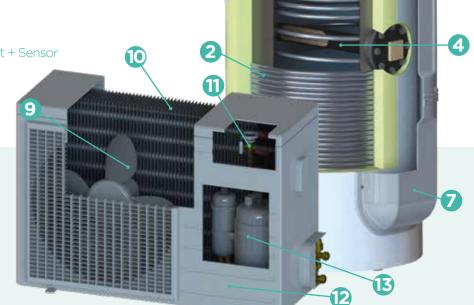
Clock / Programming

ON/OFF Electrical resistance

Change Values

Go through Menus/ Submenus

- **3 DISTINCT OPERATING**
- 2 FUNCTIONALITIES
- ALLOWS TEMPERATURE DISPLAY
- **ELECTRICAL SUPPORT**
- TIME PROGRAMMING
- KEYBOARD LOCK

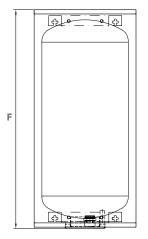


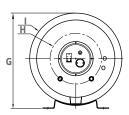
6

8

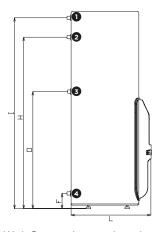
- DHW Cylinder
- 2 Condenser (Coil)
- Optional Supplementary Coil
- 4 Ceramic Resistance + Thermostat + Sensor
- 5 High Density Insulation
- 6 Outside Coating
- Split Cover
- 8 Electronic Controller
- 9 Ventilator
- 10 Evaporator
- Expansion Valve
- 12 Unit box
- (B) Compressor

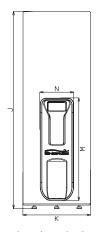
- SILENCE AT HOME
- WITHOUT DUCTS
- REDUCED HEATING TIME
- LOW MAINTENANCE
- OUTSIDE THE CYLINDER CONDENSER (NO CONTACT WITH WATER)
- IMPROVEMENT OF THE ENERGY CLASSIFICATION OF THE BUILDING
- OPERATION TIME PROGRAMMING
- EFFICIENT FUNCTIONING EVEN AT LOW TEMPERATURES **OUTDOORS**
- **EFFICIENCY AND SILENCE**




Check warranty

Split Heat Pump domestic hot water

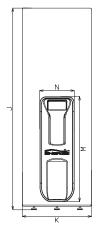




Dimensions	160 i
F	1150
G	550
Н	295
ı	530

	160i		
1 (Hot water)	1/2" Female		
4 (Cold water)	1/2" Female		

With flares valves on the split unit and on the cylinder.



Dimensions	250i*	300i	500i
F	89	92	92
0	830	772	772
Н	1333	1172	1760
I	1469	1315	1927
L	685	755	755
J	1543	1415	1995
K	580	650	650
М	879	879	879
N	290	290	290

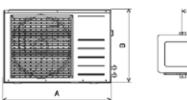
	250i 300i	500i
1 (Hot water)	3/4" Male	1" Male
2 (PT valve)	1/2" Female	1/2" Female
3 (Recirculation)	3/4" Male	3/4" Male
4 (Cold water)	3/4" Male	1" Male

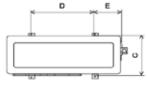
With flares valves on the split unit and on the cylinder.

	<u> </u>		— a	0 2	
	I	0	— d	3	
L	Ÿ	<u>a</u>		6	

Dimensions	250ix*	300ix	500ix
F	89	92	92
Р	203	221	625
G	696	621	1515
0	830	772	772
Н	1333	1172	1760
1	1469	1315	1927
L	685	755	755
J	1543	1415	1995
K	580	650	650
М	879	879	879
N	290	290	290

	250ix 300ix	500ix
1 (Hot water)	3/4" Male	1" Male
2 (PT valve)	1/2" Female	1/2" Female
3 (Recirculation)	1/2" Female	1/2" Female
4 (Cold water)	3/4" Male	1" Male
5 (Coil Inlet)	1" Male	1" Male
6 (Coil Outlet)	1" Male	1" Male


With flares valves on the split unit and on the cylinder.


* Hydraulic connections will be in the front of the storage tank, 45° on the right side. This change will take place from the 4th quarter of 2019.

Split Heat Pump domestic hot water

Technical drawing

Dimensions	Unidade Exterior
А	776
В	530
С	241
D	548
E	114

TECHNICAL DATA					
CYLINDER	UNIT.	160i	250 i/ix	300 i/ix	500 i/ix
Capacity	L	160	250	300	500
Dimensions (ø height)	m	0,55 1,15	0,58 1,53	0,65 1,39	0,65 1,99
Gross weight	kg	47	62/69*	72/79*	110/121*
Material	-	Stainless Steel AISI444			
Outside coating	-	Metallic slate			
Insulation	-	High density polyurethane (55mm)			
Corrosion protection	-	Magnesium Anode 1″1/4			
Maximum water temperature	٥С			80	
Maximum operation pressure	bar			7	
Thermal loss	kWh/24h		1,01	1,17	1,81
Coil* (ø length)	m		0,025 10	0,025 10	0,025 24
Coil thermal power*	kW		20***		54**
Protection Index	-			IPX1	
Auxiliary coil power	W		1500		2200
Refrigerating connections	pol.			1/4" 3/8"	
7					

^{**}Primary circuit (Te = 90°C; Ts = 80°C); DHW circuit (Te = 10°C; Ts = 60°C)

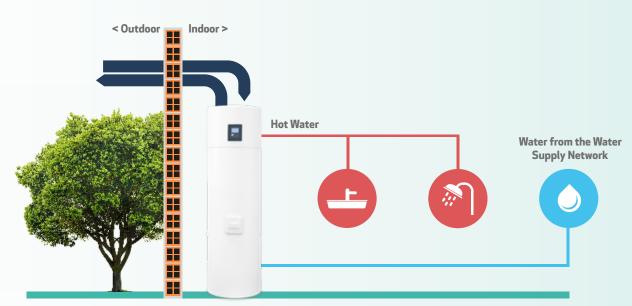
OUTSIDE UNIT					
Weight	kg	33			
Refrigerating connections	pol.	1/4" 3/8"			
Sound level	dB	59			
Power supply	V/Hz	230/50			
Protection Index	-	- IPX1			
Absorbed electrical power (BC) (med / max)	W	600/1000			
Thermal power supplied (BC) (med / max)	W	W 1920/3200			
Maximum distance between refrigeration connections	m	20 (hight max. 10)			
Outdoor operating temperature range	°C	-14/43			
Refrigerating fluid	type/g	R134a / 1600			
Air flow	m3/h	1300			
PERFORMANCE					
Tapping profile	-	L	XL	XL	XXL
COP	-	3,26	3,35	3,44	3,48
Amount of water removed at 40°C	L	194	323	362	572
ErP Class	-	Α+	A+	A+	A+
Energetic efficiency	%	135	139,3	143,2	139
Annual electricity consumption	kWh/year	759	1202,6	1170	2560

^{*}A14/W54 according to EN16147 and Delegated Regulation (EU) N°812/2013

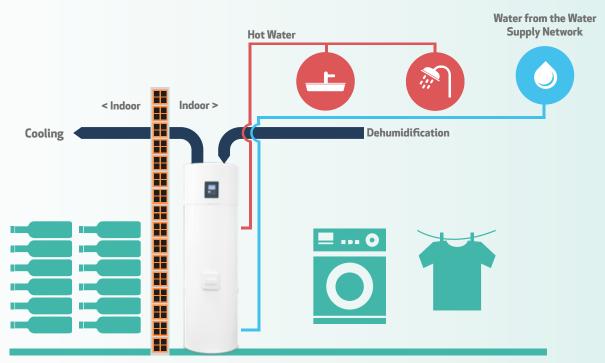
AQUAPURA MONOBLOC

Heat Pumps for Domestic Hot Water

Available with capacities of 100, 200, 250 and 300 litres. Cylinder in enamelled and stainless steel



DOMESTIC HOT WATER



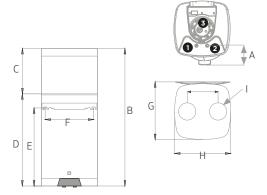
WALL APPLICATION

Standard Installation

Installation with dehumidification and refreshing of the space

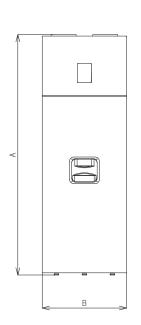
EASYTO INSTALL

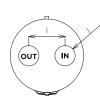
- MINIMUM SPACE INSIDE YOUR HOUSE
- HIGH EFFICIENCY LEVEL
- WORKS WITH PV SYSTEMS
- EASY TO INSTALL
- DEHUMIDIFIES THE AIR
- ANTI LEGIONELLA FUNCTION
- QUIET OPERATION

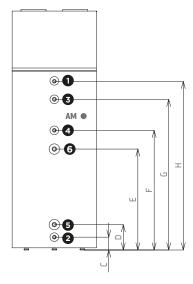

- STAINLESS STEEL CYLINDER
- FUNCTIONAL, SIMPLE AND ATTRACTIVE DESIGN
- ECONOMIC AND ECOLOGICAL
- WORK UP TO -5°C
- 55°C WATER TEMPERATURE EVEN DURING WINTER

Monobloc Heat Pump domestic hot water

Technical drawing



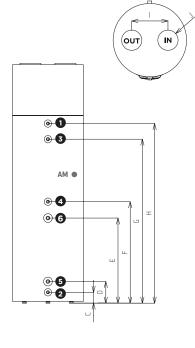

Dimensions	100esm
А	116
В	1725
С	420
D	855
Е	724
F	450
G	535
Н	520
I	160
1 (Hot water)	3/4" M
2 (PT valve)	3/4" M
2 (Anada)	


3 (Anode)

Technical drawing

Dimensions	200i / 200ix*
А	1666
В	580
С	89
D	205
Е	696
F	830
G	1034
Н	1170
I	286
J	160

1 (Hot Water)	3/4"M
2 (Cold Water)	3/4" M
3 (PT valve)	1/2"F
4 (Recirculation)	1/2"F
5 (Coil Inlet)	1" M
6 (Coil Outlet)	1" M


 $^{^{*}}$ Hydraulic connections will be in the front of the storage tank, 45° on the right side. This change will take place from the 4th quarter of 2019.

Monobloc Heat Pump domestic hot water

Technical drawing

Dimensions	250i / 250ix*	300i / 300ix
А	1975	1835
В	580	650
С	89	92
D	205	221
Е	696	621
F	830	772
G	1333	1172
Н	1469	1315
I	286	286
J	160	160
1 (Hot Water)	3/	′4″ M
2 (Cold Water)	3/	′4″ M
3 (PT valve)	1,	/2" F
4 (Recirculation	on) 1,	/2" F
5 (Coil Inlet)	1	"M
6 (Coil Outlet)	1	"M

ELECTRONIC CONTROLLER

MODEL 100

MODELS 200 | 250 | 300

ECO - The equipment only works as heat pump.

AUTO - The equipment works as a heat pump and with electrical elements should it be required.

BOOST - The equipment works simultaneously as a heat pump with the electrical element.

VACATIONS - Allows the user to setup a certain number of days on which the system will be off. On the last days the system will perform a anti-legionella cycle.

- 1 ON/OFF
- 2 Unlock Keyboard | Enter Menu | Confirm Parameters
- 3 Select Operation Mode | Decrease Values
- 4 Activation Of The Defrosting Cycle | Increase Values
- 1 Color LCD
- 2 ON/OFF
- 3 Menu
- 4 Compressor ON/OF
- **5** Electrical Element
- 6 Anti-Legionella
- 7 Enter

DISINFECT - Heating cycling at a higher temperature in order to disinfect the water (legionella) May be programed automatically or

PV FUNCTION - Increases the water temperature set point when PV in producing electricity heating water for free.

Monobloc Heat Pump domestic hot water

	Unid.	100esm	200i	200ix	250i	250ix	300i	300ix
Power Supply	V~/Hz				220-240/50			
Thermal Power	W				1800			
Electrical Power	W	400-650			400	-700		
Electrical Element	W	1000			15	00		
Cop En255-3/En16147	-	2.8	3,47	3,47	3,25	3,25	3,3	3,3
Heating Time* (EN16147)	h:m	02:20	05:23	05:23	06:46	06:46	07:01	07:31
Amount of water removed at 40 °C in one extraction (EN16147)	l	109	242	241,1	314,6	313,1	362	362
Sound Level @ 2m	dB				51			
Refrigerant Fluid	-		1		R134a			
ErP APPLIES TO EIRP Class	-				Д+			
READY ROOUCIS Tapping Profile	-	М	L	L	XL	XL	XL	XL
DIMENSIONS / WEIGHT / CONNECTIONS								
Dimensions Ø/H	mm	520/1275	580/1667	580/1955	580/1955	580/1955	650/1820	650/1820
Weight	kg.	70	73	88	80	88	93	98
Air Vent Diameter	mm				160			
Cold Feed & Hot Water Diameters	Pol.	1/2"	3/4"					
HOT WATER CYLINDER								
Nominal Capacity	l	100	200	200	250	242	300	300
Maximum Operating Pressure	bar				7			
Material	-	Enamelled			Stainles	s Steel**		
Insulation	-			Hiş	gh Density ***	*		
Corrosion Protection	-			Мад	gnesium Anoc	de		
Auxiliary Coil (Comp./Ø)	m/mm	-	-	10/25	-	10/25	-	10/25
Auxiliary Coil Hydraulic Connections	-	-	-	7"	-	1"	-	1"
WORKING CONDITIONS								
Outside Air Temperature Min/Max	°C				-5/40			
Maximum Water Temperature - Eco Mode	°C				55			
Maximum Water Temperature - Boost Mode	°C				70			

EN16147: Water heating from 10 °C to 54 °C
*Water temperature raised from 10 °C to 54 °C. Air temperature 7° C. | **High Corrosion Resistance | *** 60mm Thickness

INVERTER, EVOTERM E X30 HEAT PUMPS FOR HEATING AND COOLING

ENERGIE PRESENTS

AQUAPURA INVERTER AQUAPURA EVOTERM COMBI AQUAPURA X30

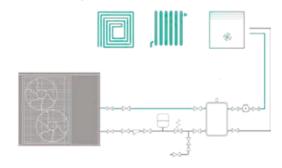
AQUAPURA

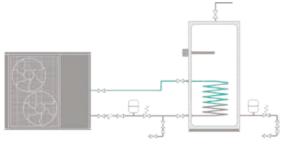
AQUAPURA INVERTER

Heat pump for heating and cooling | domestic hot water

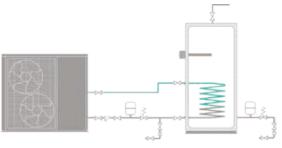
HEATING AND COOLING DOMESTIC HOT WATER

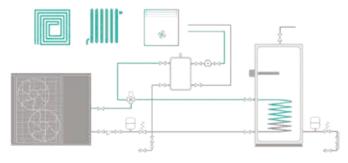
80 | ENERGIE CATALOGUE **AQUAPURA INVERTER**


HIGH EFFICIENCY EATING AND OLING


- HEATING AND/OR COOLING
- REDUCED MAINTENANCE AND LOW OPERATING NOISE
- OPERATING WITH EXTERNAL TEMPERATURES DOWN TO - 25°C
- CONSTRUCTION WITH ANODIZED COATING RESISTANT TO NATURAL CORROSION
- DOMESTIC HOT WATER FUNCTION (CONTROL BOX)

- THE IDEAL HEAT PUMP FOR UNDERFLOOR HEATING
- EFFICIENT AND QUIET SOLUTION
- ATTRACTIVE AND COMPACT DESIGN
- HEAT PUMP WITH THE CAPABILITY TO **HEAT HOT WATER**
- FACILITATES HEATING AND COOLING IN **CERTAIN SITUATIONS**

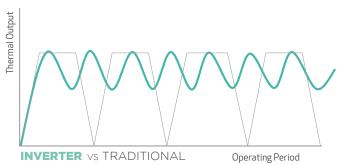

Technical drawing


HEAT PUMP WITH BUFFER

HEAT PUMP FOR DOMESTIC HOT WATER (DHW)

HEAT PUMP WITH BUFFER + DHW

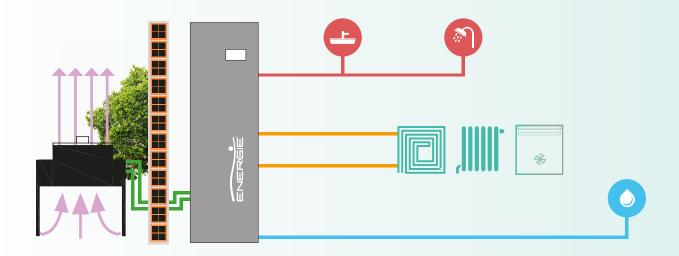
HEAT PUMP WITHOUT BUFFER + DHW

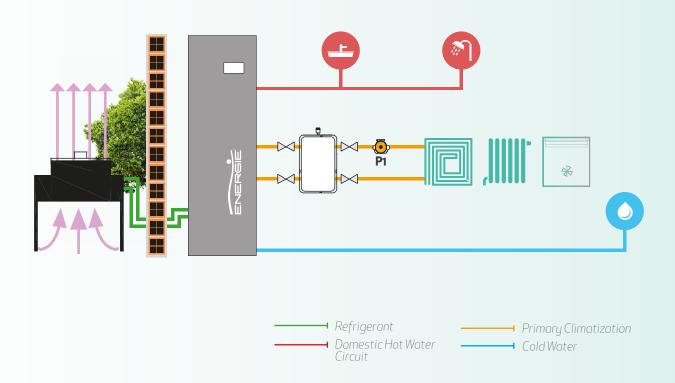

Inverter heat pump for heating and cooling | domestic hot water

TECHNICAL CHARACTERISTICS		INVERTER 8-12	INVERTER 5-18
Power supply	/	220-240V~/50Hz	220-240V~/50Hz
Refrigerant type	/	R410A	R410A
Heating capacity	kW	4,20 - 12,30	5,40 - 18,50
Electric consumption	kW	0,80 - 3,40	1,20 - 5,10
Power supplied (heating) ¹	kW	11,60	17,30
Electrical consumption (heating) ¹	kW	2,76	4,18
COP	/	4,21	4,14
Cooling capacity	kW	2,8 - 10,0	5 - 14,5
Electrical consumption	kW	1,0 - 4,0	1,6 - 6,0
Power supplied (cooling) ²	kW	9,5	14,10
Electrical consumption (cooling) ²	kW	2,66	4,01
EER	/	3,57	3,52
Maximum water temperature	°C	55	55
Electrical heater (Backup)	/	Integrated (3kW)	No
Max current input	А	18,0 + 13,0(Electical heater backup)	27,0
Number of Compressors	/	1	1
Compressor type	/	DC Inverter	DC Inverter
Water pump	/	Integrated	Integrated
Minimum flow	m³/h	1,6	2,8
Number of Fans	/	1	2
Hydraulic connections (inlet/outlet)	Pol.	1"/1"	1" 1/4 / 1" 1/4
Sound	dB(A)	54	58
Net weight/Packaged weight	Kg	110/123	163/180
Net dimensions (L/ A/ P)	mm	960/910/440	990/1320/395
Packaged dimensions (L/ A/ P)	mm	1010/920/470	1040/1440/450
Energy eciency (ErP 35°C)	%	153	157
Energy eciency (ErP 55C°)	%	122	128
Energy eciency class (ErP 35°C)	/	A++	A++
Energy eciency class (ErP55°C)	/	A+	A++

¹⁾ Heating Mode • Ambient temperature DB/WB 7°C/6°C; • Outlet / inlet water temperature: 35° C/30°C. 2) Cooling mode • Ambient temperature DB/WB 35° C/24°C; • Water temperature (inlet / outlet): 7°C/12°C.

DC INVERTER Technology


The DC INVERTER technology differs from many other existing technologies in the market since it possesses compressors with the capacity to vary the frequency of operation according to the exact comfort needs of the house HVAC. There is therefore lower energy consumption.



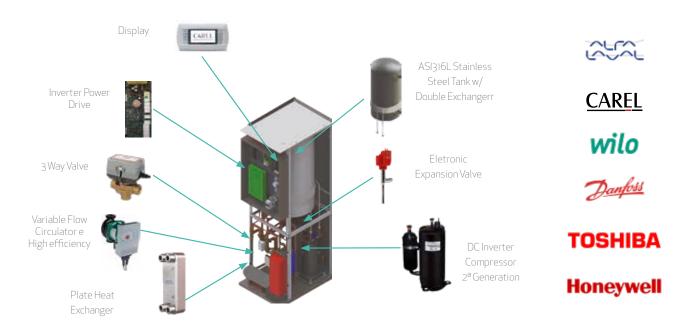
EVOTERM COMBI 3-13

NEW INSTALATION

INSTALLATION WITH INERTIA

EVOTERM COMBI 3-13

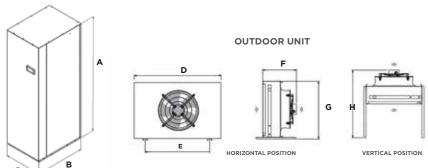
Heat pump for heating and cooling | domestic hot water


84 | ENERGIE CATALOGUE EVOTERM COMBI 3-13

HIGH EFFICIENCY HEATING AND COOLING

- INTEGRATED DHW TANK OF 200 L IN STAINLESS STEEL AISI 316L
- DHW PRODUCTION UP TO 70°C IN BC MODE WITH HEAT RECOVERY
- MAXIMUM DISTANCE BETWEEN UNITS UP TO 20M
- ErP READY
- DC INVERTER 2ND GENERATION TECHNOLOGY
- INDOOR UNIT OF REDUCED CLADDING (<1M2)
- OUTDOOR UNIT CABLE OF HORIZONTAL

- OR VERTICAL INSTALLATION
- CAREL CONTROL
- SOFT START SYSTEM
- TUV MANUFACTURING QUALITY
- DYNAMIC ANTIFREEZE EVAPORATOR
- SIMPLE "PLUG AND PLAY" INSTALLATION
- DC INVERTER AXIAL FAN
- COMPACT DESIGN UNITS
- EQUIPPED WITH HYDRAULIC KIT FOR CLIMATIZATION AND DHW.

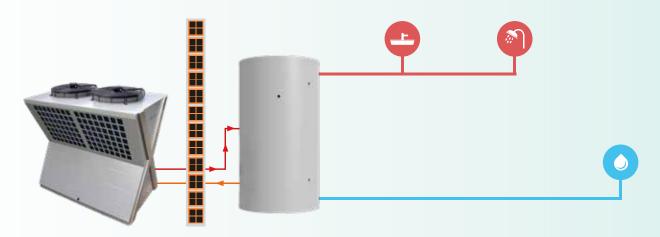


Inverter heat pump for heating and cooling | domestic hot water

INDOOR UNIT				
Heating Capacity			kW	3 - 13
	Nominal (1)		kW	6,00
	Maximum		kW	13,00
Nominal Consumption			kW	1,34
COP (1)				4,5
Cooling Capacity (2)			kW	3 - 12,7
	Nominal (2)		kW	4,70
	Maximum		kW	12,70
Nominal Consumption			kW	1,12
EER (2)				4,2
Energy Class - Environment Heating				A++
Dimensions	AxLxP		mm	1900x600x840
Weight	Kg		Kg	243
Maximum Temperature			ºC	60
Hydraulic Connections		Outlet / Inlet		1" M
Domestic Hot Water (DHW)	Tank		L	200
	Material			INOX AISI 316L
	Máx. Temp. (compressor only)		ōС	70
	Electrical Backup		W	1500
	DHW Connections	Cold / Hot		3/4" M
	COP DHW (3)			3,27
	Consumption Profile			L
	Efficiency ⁿ		%	138
	DHW Energy Class			Α+
Refrigerant	Туре			R410A
	Preload		Kg	3,5
	Connections	Liquid		1/2"
		Vapor		3/4"
Sound Pressure	(distance 1m)		dBA	42
Electrical Supply	Туре			230V or 400 V
	Electrical Cable	230V	mm²	3G6
		400V	mm²	5G4
	Protection Circuit Breaker	230V		40A
		400V		32A
OUTDOOR UNIT				
Dimensions	AxLxP		mm	700x940x600
Weight			Kg	37
Sound Pressure	(distance 10m)		dBA	34
Туре				Evaporator + Fai
Fan				Silent Axial Fan
INTERCONNECTION BETWEEN UNITS				
Electrical wiring			mm²	3G1,5 + 4 × 0,5
Maximum distance without addition of refrigerant			m	10
Maximum distance with addition of refrigerant			m	20
Maximum drop			m	15

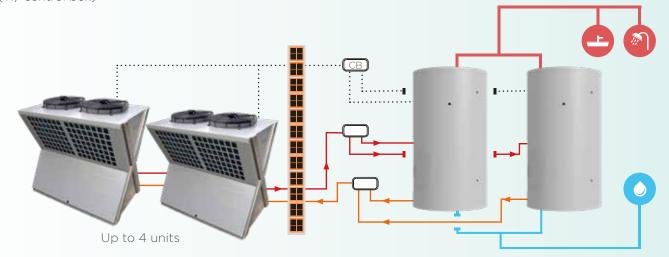
⁽¹⁾ According to the standard EN 14511, A 7 / W 30/35 | (2) According to the standard EN 14511, A 35 / W 18/23 | (3) According to the standard EN 16147, A 14 / W 10/54

INDOOR UNIT


В	810 mm
С	600 mm
D	950 mm
E	790 mm
F	404 mm
G	684 mm
Н	804 mm

1900 mm

AQUAPURA X30


STANDARD INSTALATION

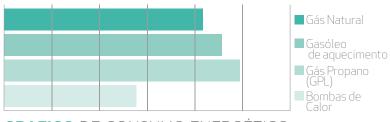
INSTALATION WITH BUFFER TANK (cold weather regions)

INSTALATION MODULAR SYSTEM (W/ control box)

Heat pump for heating and cooling | domestic hot water

HEATING AND COOLING DOMESTIC HOT WATER

88 | ENERGIE CATALOGUE AQUAPURA X30



- DHW PRODUCTION UP TO 80°C
- ONLY1COMPRESSOR
- COMPACT DESIGN
- INTEGRATED WATER PUMP
- CAREL CONTROL
- SIMPLE INSTALLATION "PLUG & USE"

- MODULAR SYSTEM UP TO 120 KW
- CONTROL BOX (OPTIONAL)
- EVI SCROLL TECNOLOGY
- UP TO 120 KW OF CAPACITY CONNECTING 4 UNITS OF 30 KW EACH

CONSUMPTION OF PRIMARY ENERGY

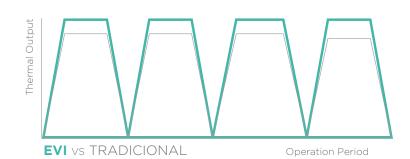
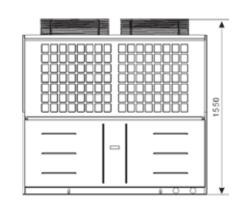
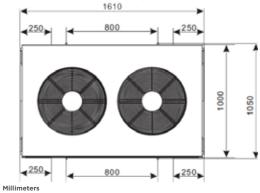

The heat pumps are capable of heating and cooling as well as domestic hot water. Those solutions stand out for their high energy efficiency. They can reach an energy classification up to A++ for heating. They also stand out for their ease of integration with other heating systems and easy installation.

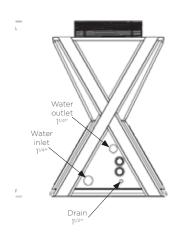
GRAFICO DE CONSUMO ENERGÉTICO

EVITECHNOLOGY

Optimized vapor injection EVI technology gives superior efficiency to conventional technology. This is achieved with an intermediate vapor injection during the compression cycle thereby reducing the high-speed working frequency of the compressors, obtaining an increase in the heat production capacity with lower energy consumption.




ENERGIE


Monobloc heat pump for heating and cooling | domestic hot water

TECHNICAL CHARACTERISTICS	
OUTDOOR UNIT	
Equipment	Air-Water Heat Pump
Model	Energie AQUAPURA X30
Refrigerant	R134a
Power supply	380V/3N~/50Hz
Maximum heating capacity	40,00 kW *
Heating capacity	26,50 kW **
COP	3,70 **
Heating capacity	32,00 kW ***
COP	3,48 ***
Domestic Hot Water production	550 l/h ***
Compresor	EVI Scroll
Number ofcompresors	1
Compression stages to reach max. temperature	1
Water pump	GRUNDFOS
Nominal flow	5,00 m ³ /h
Exchanger	DHW Helical Encapsulated
Number of fans	2
Fan orientation	Vertical
Noise level	62 dB(A)
Dimensions (L×W×H)	1610×1050×1550 mm
Weight	362 kg
Outdoor temperature	-7°C to 45°C
Maximum operating temperature	80°C
Recommended operation temperature	75°C
Hydraulic connections	1 1/4"

^{*} DHW production (A35/ -°C W15-75°C, COP 3,74) |

CAREL DISPLAY

^{**} according to EN 14511 (A7/6°C W30/35°C) | *** DHW production (A14°C W15-65°C

This catalogue was created for information purposes only and does not constitute a contractual offer from ENERGIE Est Lda. ENERGIE Est Lda has compiled the content of this catalogue to the best of their knowledge. There is no guarantee expressed or implied regarding the completeness, accuracy, reliability for a particular purpose of its content and the products and services presented therein. Specifications are subject to change without notice. The ENERGIE Est Lda explicitly rejects any direct or indirect damage, in the broadest sense, arising from or related to the use and / or interpretation of this catalogue.